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Abstract

The notion of linear finite transducer (LFT) plays a crucial role in a family of
cryptosystems introduced in the 80’s and 90’s. However, as far as we know, no study
was ever conducted to count and enumerate these transducers, which is essential to
verify if the size of the key space, of the aforementioned systems, is large enough to
prevent a exhaustive search attack. In this paper, we determine the cardinal of the
equivalence classes on the set of the LFTs with a given size. This result is sufficient
to get an approximate value, by random sampling, for the number of non-equivalent
injective LFTs, and subsequently for the size of the key space. We introduce a notion of
canonical LFT, give a method to verify if two LFTs are equivalent, and prove that every
LFT has exactly one equivalent canonical transducer. We then show how this canonical
LFT allows us to calculate the size of each equivalence class on the set of the LFTs with
the same number of states, and deduce a recurrence relation to count the number of
equivalence classes.

1 Introduction

Transducers, in the most used sense in automata theory, are automata with output that
realise rational functions. They are widely studied in the literature, having numerous
applications to real world problems. They are essential, for example, in language and speech
processing [3]. In this work we deal only with transducers as defined by Renji Tao [6], and
our motivation comes from their application to Cryptography. According to that definition,
a transducer is a finite state sequential machine given by a quintuple 〈X ,Y, S, δ, λ〉, where:
X , Y are the nonempty input and output alphabets, respectively; S is the nonempty finite
set of states; δ : S × X → S, λ : S × X → Y, are the state transition and output functions,
respectively. These transducers are deterministic and can be seen as having all the states as
final. Every state in S can be used as initial, and this gives rise to a transducer in the usual
sense, i.e., one that realises a rational function. Therefore, in what follows, a transducer is
a family of classical transducers that share the same underlying digraph.

A transducer is called linear if its transition and output functions are linear maps. These
transducers play a core role in a family of cryptosystems, named FAPKCs, introduced in a
series of papers by Tao [7–10]. Those schemes seem to be a good alternative to the classical
ones, being computationally attractive and thus suitable for application on devices with
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Figure 1: Schematic representation of FAPKC working principle.

very limited computational resources, such as satellites, cellular phones, sensor networks,
and smart cards [8].

Roughly speaking, in these systems, the private key consists of two injective transducers,
denoted by M and N in Figure 1, where M is a linear finite transducer (LFT), and N is
a non-linear finite transducer (non-LFT) of a special kind, whose left inverses can be easily
computed. The public key is the result of applying a special product for transducers, C, to
the original pair, thus obtaining a non-LFT, denoted by C(M,N) in Figure 1. The crucial
point is that it is easy to obtain an inverse of C(M,N) from the inverses of its factors, M−1

and N−1, while it is believed to be hard to find that inverse without knowing those factors.
On the other hand, the factorization of a transducer seems to be hard by itself [11].

The LFTs in the FAPKC systems are of core importance in the invertibility theory of
finite transducers, on which part of the security of these systems relies on [1]. They also play a
crucial role in the key generation process, since in these systems a pair (public key, private key)
is formed using a LFT and two non-LFTs, as explained above. Consequently, for these
cryptosystems to be feasible, injective LFTs have to be easy to generate, and the set of non-
equivalent injective LFTs has to be large enough to make an exhaustive search intractable.

Several studies were made on the invertibility of LFTs, [1,2,4,5,11,12], and some attacks
to the FAPKC systems were presented [6]. However, as far as we know, no study was
conducted to determine the size of the key space of these systems. To evaluate that size,
one first needs to determine the number of non-equivalent injective LFTs, the exact value of
which seems to be quite hard to obtain. In order to be able to get an approximate value, one
needs to know the different sizes of the equivalence classes. This is crucial to have a LFT’s
uniform random generator.

In this work we describe a method to determine the sizes of those equivalence classes. To
accomplish that, a notion of canonical LFT is introduced, being proved that each equivalent
class has exactly one of these canonical LFTs. It is also shown how to construct the equivalent
canonical LFT to any LFT in its matricial form, and, by introducing a new equivalence test
for LFTs, to enumerate and count the equivalent transducers with the same number of states.
From this, we derive a recurrence relation that counts the number of equivalence classes.

The paper is organized as follows. In Section 2 we introduce the basic definitions.
Section 3 is devoted to the equivalence test on LFTS. The concept of canonical LFTs is
introduced in Section 4, and the results about the size of the classes of LFTs are presented
in Section 5. Finally, in Section 6, we present the recurrence relation that counts the number
of canonical LFTs of a given size.
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2 Basic concepts

As usual, for a finite set A, we let |A| denote the cardinality of A, An be the set of words
of A with length n, where n ∈ N, and A0 = {ε}, where ε denotes the empty word. We put
A? = ∪n≥0A

n, the set of all finite words, and Aω = {a0a1 · · · an · · · | ai ∈ A} is the set of
infinite words. Finally, |α| denotes the length of α ∈ A?.

In what follows, a finite transducer (FT) is a finite state sequential machine which, in any
given state, reads a symbol from a set X , and produces a symbol from a set Y, and switches
to another state. Thus, given an initial state and a finite input sequence, a transducer
produces an output sequence of the same length. The formal definition of a finite transducer
is the following.

Definition 1. A finite transducer is a quintuple 〈X ,Y, S, δ, λ〉, where:

• X is a nonempty finite set, called the input alphabet;

• Y is a nonempty finite set, called the output alphabet;

• S is a nonempty finite set called the set of states;

• δ : S ×X → S, called the state transition function;

• λ : S ×X → Y, called the output function.

Let M = 〈X ,Y, S, δ, λ〉 be a finite transducer. The state transition function δ and the
output function λ can be extended to finite words, i.e. elements of X ∗, recursively, as follows:

δ(s, ε) = s δ(s, xα) = δ(δ(s, x), α)

λ(s, ε) = ε λ(s, xα) = λ(s, x) λ(δ(s, x), α),

where s ∈ S, x ∈ X , and α ∈ X ∗. In an analogous way, λ may be extended to X ω.
From these definitions it follows that one has, for all s ∈ S, α ∈ X ∗, and for all β ∈

X ∗ ∪ X ω,
λ(s, αβ) = λ(s, α) λ(δ(s, α), β).

A transducer can be represented by a diagram that is a digraph with labeled vertices
and edges, where each state is represented by a vertex and each directed edge indicates a
transition between states. The label of each edge is a compound symbol of the form i/o,
where i stands for the input symbol and o for the output.

For example, the transducer M = 〈{0, 1}, {a, b}, {s1, s2}, δ, λ〉 with

δ(s1, 0) = s1 δ(s1, 1) = s2 δ(s2, 0) = s1 δ(s2, 1) = s2

λ(s1, 0) = a λ(s1, 1) = a λ(s2, 0) = b λ(s2, 1) = b

is represented by the diagram:

s1 s2

1 |a

0 |b

0 |a 1 |b

See figure 2 for other examples of simple transducers.
The notions of equivalent states and minimal transducer considered here are the classical

ones.
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Definition 2. Let M1 = 〈X ,Y1, S1, δ1, λ1〉 and M2 = 〈X ,Y2, S2, δ2, λ2〉 be two FTs. Let
s1 ∈ S1, and s2 ∈ S2. One says that s1 and s2 are equivalent, and denote this relation by
s1 ∼ s2, if

∀α ∈ X ?, λ1(s1, α) = λ2(s2, α).

Trivially, ∼ is an equivalence relation on S. As usual, we will denote by [s]∼ the
equivalence class that contains s, and S/∼ = {[s]∼ | s ∈ S}.

Definition 3. A finite tranducer M = 〈X ,Y, S, δ, λ〉 is called minimal if it has no pair of
equivalent states, i.e., each element of S/∼ has cardinal 1.

The transducer (a) of Figure 2 is an example of a non-minimal transducer, where the
states s1 and s3 are equivalent. The transducer (b) is minimal.

s1 s2

s3 s4

1 |b
0 |b

1 |a

0 |a

1 |b
0 |b

0 |a 1 |b
(a)

s1 s2

s4s3

1 |b
0 |b

1 |a

0 |a

1 |b

0 |a0 |a

1 |b
(b)

Figure 2: A non-minimal (a) and a minimal finite transducer (b).

We now introduce the notion of equivalent transducers used in this context.

Definition 4. Let M1 = 〈X ,Y1, S1, δ1, λ1〉 and M2 = 〈X ,Y2, S2, δ2, λ2〉 be two FTs. M1 and
M2 are said to be equivalent, and denote this by M1 ∼ M2, if the following two conditions
are satisfied:

∀s1 ∈ S1, ∃s2 ∈ S2 : s1 ∼ s2 and ∀s2 ∈ S2, ∃s1 ∈ S1 : s1 ∼ s2.

The relation ∼ defines an equivalence relation on the set of FTs.

Definition 5. Let M1 = 〈X ,Y, S1, δ1, λ1〉 and M2 = 〈X ,Y, S2, δ2, λ2〉 be two FTs. M1 and
M2 are said to be isomorphic if there exists a bijective map ψ from S1 onto S2 such that

ψ(δ1(s1, x)) = δ2(ψ(s1), x) (1)

λ1(s1, x) = λ2(ψ(s1), x) (2)

for all s1 ∈ S1, and for all x ∈ X. The map ψ is called an isomorphism from M1 to M2.

Finally, we give the definition of linear finite transducer (LFT).

Definition 6. If X ,Y and S are vector spaces over a field F, and both δ : S × X → S and
λ : S ×X → Y are linear maps, then M = 〈X ,Y, S, δ, λ〉 is called linear over F, and we say
that dim(S) is the size of M .

Let L be the set of LFTs over F, and Ln the set of the transducers in L with size n. The
restriction of ∼ to L is also represented by ∼, and the restriction to Ln is denoted by ∼n.
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Definition 7. Let M1 and M2 be two LFTs. M1 and M2 are said to be similar if there is a
linear isomorphism from M1 to M2.

Let M = 〈X ,Y, S, δ, λ〉 be a LFT over a field F. If X ,Y, and S have dimensions l, m
and n, respectively, then there exist matrices A ∈ Mn,n(F), B ∈ Mn,l(F), C ∈ Mm,n(F),
and D ∈Mm,l(F), such that

δ(s, x) = As+Bx,

λ(s, x) = Cs+Dx,

for all s ∈ S, x ∈ X . The matrices A,B,C,D are called the structural matrices of M , and
l,m, n are called its structural parameters. Notice that if M1 and M2 are two equivalent LFTs
with structural parameters l1,m1, n1 and l2,m2, n2, respectively, then, from the definition of
equivalent transducers, one has l1 = l2 and m1 = m2.

A LFT such that C is the null matrix (with the adequate dimensions) is called trivial.

One can associate to a LFT, M , with structural matrices A,B,C,D, a family of matrices
which are very important in the study of its equivalence class, as will be clear throughout
this paper.

Definition 8. Let M ∈ Ln with structural matrices A,B,C,D. The matrix

∆
(k)
M =


C
CA

...
CAk−1


is called the k-diagnostic matrix of M , where k ∈ N ∪ {∞}.

The matrix ∆
(n)
M will be simply denoted by ∆M and will be referred to as the diagnostic

matrix of M . The matrix ∆
(2n)
M will be denoted by ∆̂M and called the augmented diagnostic

matrix of M .

Definition 9. Let V be a k-dimensional vector subspace of Fn, where F is a field. The
unique basis {b1, b2, . . . , bk} of V such that the matrix [b1 b2 · · · bk]T is in row echelon form
will be here referred to as the standard basis of V .

3 Testing the equivalence of LFTs

Let M = 〈X ,Y, S, δ, λ〉 be a LFT over a field F with structural matrices A, B, C, D. Starting
at a state s0 and reading an input sequence x0x1x2 . . ., one gets a sequence of states s0s1s2 . . .
and a sequence of outputs y0y1y2 . . . satisfying the relations

st+1 = δ(st, xt) = Ast +Bxt,

yt = λ(st, xt) = Cst +Dxt,

for all t ≥ 0. The following result is then easily proven by induction [6, Theorem 1.3.1].
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Theorem 1. For a LFT as above,

si+1 = Ais0 +
i−1∑
j=0

Ai−j−1Bxj ,

yi = CAis0 +
i∑

j=0

Hi−jxj ,

for i ∈ {0, 1, . . .}, where H0 = D, and Hj = CAj−1B, j > 0.

Tao, in his book, presents the following necessary and sufficient condition, the only one
known so far, for the equivalence of two states of LFTs [6, Theorem 1.3.3]:

Theorem 2. Let M1 = 〈X ,Y1, S1, δ1, λ1〉 and M2 = 〈X ,Y2, S2, δ2, λ2〉 be two LFTs. Let
s1 ∈ S1, and s2 ∈ S2. Then, s1 ∼ s2 if and only if the null states of M1 and M2 are
equivalent, and λ1(s1, 0

ω) = λ2(s2, 0
ω).

And, as a consequence, he also presents a necessary and sufficient condition for the
equivalence of two LFTs [6, Theorem 1.3.3]:

Corollary 1. Let M1 and M2 be two LFTs. Then, M1 ∼M2 if and only if their null states
are equivalent, and {λ1(s1, 0

ω) | s1 ∈ S1} = {λ2(s2, 0
ω) | s2 ∈ S2}.

However, both conditions cannot be checked efficiently, since they involve working with
infinite words. In this section, we explain how they can be reduced to a couple of conditions
that can effectively be verified. These new results will be essential in section 5 to compute
the sizes of the equivalence classes in Ln/∼n.

The following two Lemmas, which play an important role in the proofs of the subsequent
results, are immediate consequences of the basic fact that right multiplication performs linear
combinations on the columns of a matrix.

Lemma 1. Let A ∈ Mm×k, and B ∈ Mm×l. Then, rank([A|B]) = rank(A) if and only if
there X ∈Mk×l such that B = AX.

Lemma 2. Let A,B ∈Mm×k. Then, rank(A) = rank([A|B]) = rank(B) if and only if there
is an invertible matrix X ∈Mk×k such that B = AX.

Proof. Let A′ be the column echelon form of A, and B′ the column echelon form of B. Let
XA be the invertible matrix inMk×k such that A′ = AXA, and XB be the invertible matrix
in Mk×k such that B′ = BXB. Since rank(A) = rank([A|B]) = rank(B) if and only if
A′ = B′, one gets that rank(A) = rank([A|B]) = rank(B) if and only if AXA = BXB. That
is, AXAX

−1
B = B. Therefore, rank(A) = rank([A|B]) = rank(B) implies that there is an

invertible matrix X = XAX
−1
B ∈Mk×k such that B = AX.

For the remainder of this section, let M1,M2 be two LFTs with structural matrices
A1, B1, C1, D1, and A2, B2, C2, D2 respectively. Let l1,m1, n1 be the structural parameters
of M1, and l2,m2, n2 be the structural parameters of M2. To simplify the notation, take

∆̃1 = ∆
(n1+n2)
M1

and ∆̃2 = ∆
(n1+n2)
M2

.

Lemma 3. Let s1 ∈ S1 and s2 ∈ S2. Then, λ1(s1, 0
ω) = λ2(s2, 0

ω) if and only if ∆̃1s1 =
∆̃2s2.
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Proof. From Theorem 1, one has that λ1(s1, 0
ω) = λ2(s2, 0

ω) if and only if C1A
i
1s1 = C2A

i
2s2,

for i ≥ 0. Let p1 be the characteristic polynomial of A1, and p2 the characteristic polynomial
of A2. Then, p1 and p2 are monic polynomials of order n1 and n2, respectively. Moreover, by
the Cayley-Hamilton theorem, p1(A1) = p2(A2) = 0. Thus, p = p1p2 is a monic polynomial
of order n1 + n2 such that p(A1) = p(A2) = 0. Therefore An1+n2+k

1 and An1+n2+k
2 , with

k ≥ 0, are linear combinations of lower powers of A1 and A2, respectively, with the same
coefficients. Consequently, C1A

i
1s1 = C2A

i
2s2 for i ≥ 0 is equivalent to C1A

i
1s1 = C2A

i
2s2

for i = 0, 1, . . . , n1 + n2 − 1, and the result follows.

The next result states that the (n1 + n2)-diagnostic matrices of two equivalent LFTs, of
sizes n1 and n2, can be used to verify if two of their states are equivalent. It follows from
the previous Lemma, and from the fact that if M1 ∼M2 then, by Theorem 2, s1 ∼ s2 if and
only if λ1(s1, 0

ω) = λ2(s2, 0
ω).

Theorem 3. Let s1 ∈ S1 and s2 ∈ S2. If M1 ∼M2, then s1 ∼ s2 if and only if ∆̃1s1 = ∆̃2s2.

Corollary 2. Let M be a LFT, and s1, s2 ∈M . Then, s1 ∼ s2 if and only if ∆Ms1 = ∆Ms2.

Proof. From the last Theorem, s1 ∼ s2 if and only if ∆̂Ms1 = ∆̂Ms2, that is, if and only if
CAis1 = CAis2, for i = 0, 1, . . . , 2n − 1. Since the minimal polynomial of A has, at most,
degree n, this latter condition is equivalent to CAis1 = CAis2, for i = 0, 1, . . . , n− 1. Thus,
s1 ∼ s2 if and only if ∆Ms1 = ∆Ms2.

Corollary 3. Let M be a LFT over a field F. Then M is minimal if and only if rank(∆M ) =
size(M).

Proof. It is enough to notice that the linear application ϕ : S/∼ → Fnm defined by ϕ ([ s ]∼) =
∆Ms is well-defined and injective, by the previous Corollary.

Note 1. Given the structural matrices of a LFT, M , Tao shows [6, Theorem 1.3.4] how
to compute a minimal LFT equivalent to M . This implies, in particular, that every linear
transducer is equivalent to a minimal LFT.

The following theorem gives a pair of conditions that have to be satisfied for two LFTs
to be equivalent.

Theorem 4. For LFTs M1 and M2 as above, M1 ∼ M2 if and only if the following two
conditions are simultaneously verified:

1. rank(∆̃1) = rank([∆̃1 | ∆̃2]) = rank(∆̃2);

2. D1 = D2 and ∆̃1B1 = ∆̃2B2.

Proof. From Corollary 1 one has that M1 ∼M2 if and only if the null states of M1 and M2

are equivalent, and {λ1(s1, 0
ω) | s1 ∈ S1} = {λ2(s2, 0

ω) | s2 ∈ S2}.
The null states of M1 and M2 are equivalent if and only if ∀α ∈ X ?, λ1(0, α) = λ2(0, α).

By Theorem 1, this is equivalent to:
∑i
j=0Hi−jxj =

∑i
j=0H

′
i−jxj , i = 0, 1, . . . , |α|, where

α = x0x1 · · ·x|α| ∈ X ?, H0 = D1, H ′0 = D2 and Hj = C1A
j−1
1 B1, H

′
j = C2A

j−1
2 B2 , for j > 0.
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That is, ∀x0, x1, · · · , x|α| ∈ X the following equations are simultaneously satisfied:

D1x0 = D2x0

D1x1 + C1B1x0 = D2x1 + C2B2x0

D1x2 + C1B1x1 + C1A1B1x0 = D2x2 + C2B2x1 + C2A2B2x0

...

D1x|α| + · · ·+ C1A
(|α|−1)
1 B1x0 = D2x|α| + · · ·+ C2A

(|α|−1)
2 B2x0.

Using the characteristic polynomials of A1 and A2, as in the proof of Lemma 3, one sees
that when |α| ≥ u the equations after the first u of them are implied by the previous ones.
From the arbitrariness of α, it then follows that system is satisfied if and only if D1 = D2

and ∆̃1B1 = ∆̃2B2.

From Lemma 3, one has that {λ1(s1, 0
ω) | s1 ∈ S1} = {λ2(s2, 0

ω) | s2 ∈ S2} if and
only if {∆̃1s1 | s1 ∈ S1} = {∆̃2s2 | s2 ∈ S2}. This means that the column space of ∆̃1

is equal to the column space of ∆̃2, which is true if and only if there exist matrices X,Y
such that ∆̃2 = ∆̃1X and ∆̃1 = ∆̃2Y . But, from Lemma 1, this happens if and only if
rank(∆̃1) = rank([∆̃1 | ∆̃2]) and rank(∆̃2) = rank([∆̃1 | ∆̃2]).

Using the conditions in the previous result, it is not hard to write an algorithm to test
the equivalence of two LFTs.

Corollary 4. M1 ∼M2 implies D1 = D2.

It is important to highlight, at this moment, that the size of an LFT is the only
structural parameter that can vary between transducers of the same equivalence class in
L/∼. Moreover, the size of an LFT of an equivalence class [M ]∼, can never be smaller than
rank(∆M ′), where M ′ is a minimal transducer in [M ]∼. These facts will be important in
section 5.

The following Corollary is a direct consequence of Lemma 2 and of the first point of
Theorem 4.

Corollary 5. If n = n1 = n2, S1 = S2, and M1 ∼ M2, then there is an invertible matrix
X ∈Mn×n such that ∆̂M2 = ∆̂M1X.

4 Canonical LFTs

In this section we prove that every equivalence class in L/∼ has one and only one LFT that
satisfies a certain condition1. We also prove that, given the structural matrices of a LFT, M ,
one can identify and construct the transducer in [M ]∼ that satisfies that aforesaid condition.
LFTs that satisfy that condition are what we call canonical LFTs.

Lemma 4. Let M ∈ Ln with structural matrices A,B,C,D. Then, rank(∆
(k)
M ) = rank(∆M ),

∀k ≥ n.

Proof. The degree of the minimal polynomial of A is at most n, and so the matrices CAk,
for k ≥ n, are linear combinations of C,CA1, · · · , CAn−1.

1The equivalence classes formed by trivial LFTs are excluded.
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The following result shows that if two minimal LFTs, with the same set of states, are
equivalent, then the two vector spaces generated by the columns of their diagnostic matrices
are equal.

Corollary 6. Let M1 = 〈X ,Y, S, δ1, λ1〉 and M2 = 〈X ,Y, S, δ2, λ2〉 be two minimal LFT
such that M1 ∼M2. Then, {∆M1s | s ∈ S} = {∆M2s | s ∈ S}.

Proof. If M1 ∼ M2, then {λ1(s, 0ω) | s ∈ S} = {λ2(s, 0ω) | s ∈ S}, by Corollary 1. That

is, {∆(∞)
M1

s | s ∈ S} = {∆(∞)
M2

s | s ∈ S}. Since M1 and M2 are minimal, from Lemma 4 and
Corollary 3 one concludes that {∆M1s | s ∈ S} = {∆M2s | s ∈ S}.

If M is a minimal LFT, then the columns of ∆M form a basis of the space {∆Ms | s ∈ S}.
Therefore, if M1 and M2 are minimal and equivalent, there is an invertible matrix X (with
adequate dimensions) such that ∆M1X = ∆M2 . Note that this condition, here obtained for
minimal transducers, is less demanding than the one we have in Corollary 5.

The next result, together with its proof, gives a way to generate LFTs in [M ]∼, where
M is a LFT defined by its structural matrices.

Lemma 5. Let M1 = 〈X ,Y, S, δ1, λ1〉 be a non-trivial LFT. Let ψ : S → S be a vector space
isomorphism. Then, there is exactly one LFT M2 = 〈X ,Y, S, δ2, λ2〉 such that ψ is a linear
isomorphism from M1 to M2. Moreover, M1 is minimal if and only if M2 is minimal.

Proof. Let P be the matrix of ψ relative to the standard basis. From its definition ψ is
an isomorphism between M1 and M2 if and only the conditions mentioned in Section 2 are
satisfied. Let x = 0 and s1 ∈ S. From the first condition, one gets

ψ(δ1(s1, 0)) = δ2(ψ(s1), 0)⇔ PA1s1 = A2Ps1 ⇔ (PA1 −A2P )s1 = 0.

From the arbitrariness of s1, this is equivalent to PA1−A2P = 0. Since P is invertible, one
gets A2 = PA1P

−1. The second condition yields

λ1(s1, 0) = λ2(ψ(s1), 0)⇔ C1s1 = C2Ps1 ⇔ (C1 − C2P )s1 = 0.

Again, from the arbitrariness of s1, this is equivalent to C1 − C2P = 0. Thus, C2 = C1P
−1.

Now, let s1 = 0 and x ∈ X. Using a similar method, one gets B2 = PB1 and D1 = D2.
Hence, the transducer M2 satisfying the conditions of the theorem is uniquely determined by
ψ. It is then easy to see that the transducer given by the structural matrices A2 = PA1P

−1,
B2 = PB1, C2 = C1P

−1, and D2 = D1 is such that ψ is a linear isomorphism from M1 to
M2.

Since M1 and M2 are isomorphic, they are equivalent. Therefore, M1 is minimal if and
only if M2 is minimal.

Recalling that GLn(F) denotes the set of n× n invertible matrices over the field F, one
has:

Corollary 7. Let M ∈ Ln be a non-trivial minimal LFT over a finite field F. Then, the
number of minimal LFTs in [M ]∼ is |GLn(F)|.

Moreover, from the proof of Lemma 5, one gets that, given an invertible matrix X, there
is exactly one minimal transducer in [M ]∼ which has ∆MX as diagnostic matrix. The same
is not true if M is not minimal, as it will be shown in the next section. The aforementioned
proof also gives an explicit way to obtain that transducer from the structural matrices of M .
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Proposition 6. Let M1 = 〈X ,Y, S, δ1, λ1〉 be a LFT. Let ψ : S → S be a vector space
isomorphism. Let M2 be the LFT constructed from M1 and ψ(s) = Ps as described in the
proof of the last Theorem. Then, ∆M1s = ∆M2ψ(s).

Proof. Let s ∈ S, then

∆M2ψ(s) =


C1P

−1

C1A1P
−1

...

C1A
n−1
1 P−1

Ps =


C1

C1A1
...

C1A
n−1
1

 s = ∆M1s.

The next Theorem gives the condition that was promised at the beginning of this section.

Theorem 5. Every non-trivial equivalence class in L/∼ has exactly one LFT, M =
〈X ,Y, S, δ, λ〉, which satisfies the condition that {∆Me1,∆Me2, · · · ,∆Men} is the standard
basis of {∆Ms | s ∈ S}, where {e1, e2, · · · , en} is the standard basis of S.

Proof. From Note 1, one knows that every LFT is equivalent to a minimal LFT. Thus, to get
the result here claimed, it is enough to prove that if M1 = 〈X ,Y, S, δ1, λ1〉 is a non-trivial
minimal LFT, then M1 is equivalent to exactly one finite transducer M2 = 〈X ,Y, S, δ2, λ2〉
such that {∆M2e1,∆M2e2, . . . ,∆M2en} is the standard basis of {∆M1s | s ∈ S}. First, let
us notice that, since M1 is minimal, ∆M1 is left invertible, and consequently s is uniquely
determined by ∆M1s. Let B = {b1, b2, · · · , bn} be the standard basis of {∆M1s | s ∈ S}.
Let si be the unique vector in S such that bi = ∆M1si, for i = 1, 2, . . . , n. Let ψ : S → S
be defined by ψ(si) = ei. Then ψ is a vector space isomorphism. Let M2 be the LFT
constructed from M1 and ψ as described in the proof of Lemma 5. Then, M2 ∼ M1 and
M2 is minimal, which, by Corollary 6, implies {∆M2s | s ∈ S} = {∆M1s | s ∈ S}. From
Proposition 6 one also has ∆M2ei = ∆M2ψ(si) = ∆M1si = bi, for i = 1, 2, · · · , n. Therefore,
{∆M2e1,∆M2e2, . . . ,∆M2en} is the standard basis of {∆M1s | s ∈ S}. The uniqueness easily
follows from the fact that all choices made are unique.

Finally we can state the definition of canonical LFT here considered.

Definition 10. Let M = 〈X ,Y, S, δ, λ〉 be a linear finite transducer. One says that M is a
canonical LFT if {∆Me1,∆Me2, · · · ,∆Men} is the standard basis of {∆Ms | s ∈ S}, where
{e1, e2, · · · , en} is the standard basis of S.

The proofs of Theorem 5 and Lemma 5 show that given the structural matrices of a LFT,
M , one can identify and construct the canonical transducer in [M ]∼.

5 On the size of equivalence classes of LFTs

In what follows we only consider LFTs defined over finite fields with q elements, Fq, because
these are the ones commonly used in Cryptography.

In this section we explore how the size of the equivalence classes in Ln/∼n varies with
the size n. Given a minimal LFT M1 in Ln1 , our aim is to count the number of transducers
in Ln2 , with n2 ≥ n1, that are equivalent to M1.

The following result shows that given M1 ∈ Ln1 , one can easily construct an equivalent
transducer in Ln2 , for any n2 ≥ n1, which can then be used to count the number of

11



transducers in Ln2 that are equivalent to M1, as well as the size of the equivalence classes
in S.

Proposition 7. Let M1 be the LFT over Fq with structural matrices A1, B1, C1, D1, and
structural parameters l,m, n1. Let n′ ∈ N, and M2 be the LFT with structural matrices

A2 =

[
A1 0n1×n′

0n′×n1 0n′×n′

]
, B2 =

[
B1

0n′×l

]
, C2 =

[
C1 0m×n′

]
, and D2 = D1.

Then, M1 ∼M2. The structural parameters of M2 are l,m, n2, where n2 = n1 + n′.

Proof. Take u = n1 + n2. Notice that C2A
i
2 = [C1A

i
1 0m×n′ ], for i = 0, 1, . . . , u − 1. That

is, ∆
(u)
M2

= [∆
(u)
M1

0um×n′ ]. The result is then trivial by Theorem 4.

Since, from the last theorem, one knows exactly how to get the set of states of M2

equivalent to a given state of M1, the following conclusions are not difficult to obtain.

Corollary 8. Let M1 be a minimal LFT in Ln1 with structural matrices A1, B1, C1, D1,
and structural parameters l,m, n1. Let M2 be the LFT described in the last Theorem, and
let s2 be one of its states. Then |[s2]∼| = qn2−rank(∆M2

).

Proof. Since that n′ = n2 − n1 = n2 − rank(∆M2) (because M1 is minimal and M2 ∼ M1),
the result is obvious from the last theorem.

Theorem 6. Let M1 be a minimal LFT in Ln1 with structural matrices A1, B1, C1, D1, and
structural parameters l,m, n1. Let M2 be the linear transducer described in the last Theorem.
Let M ∈ Ln2 be such that M ∼ M2. Let s′ be a state of M and s2 a state of M2 such that
s′ ∼ s2. Then, |[s′]∼| = |[s2]∼|.

Proof. From Corollary 5, M ∼M2 implies that there existsX ∈ GLn2(Fq) such that ∆
(2n2)
M =

∆
(2n2)
M2

X. Let ϕ : S2 → S be defined by ϕ(s2) = X−1s2. Then, ϕ is bijective and ∆2n2
M2
s2 =

∆2n2
M2
s2 ⇐⇒ ∆2n2

M2
s2 = ∆2n2

M2
XX−1s2 ⇐⇒ ∆2n2

M2
s2 = ∆2n2

M X−1s2 ⇐⇒ s2 ∼ X−1s2 ⇐⇒
s2 ∼ ϕ(s2).

Corollary 9. Let M ∈ Ln, and s1 be one of its states. Then, |[s1]∼| = qn−rank(∆M ).

Proof. From Note 1 one knows that for any linear transducer M , one can construct a minimal
linear transducer M1 equivalent to M . Then, constructing the linear transducer M2 from M1

as described in Theorem 7, one gets M2 ∼ M (and consequently rank(∆M2) = rank(∆M )).
The result then follows from Corollary 8 and Theorem 6.

The next result counts the number of LFTs in Ln2 that are equivalent to M2, where M2

is the LFT defined from M1 as described in Proposition 7. Because M1 ∼ M2, this yields
the number of LFTs in Ln2 that are equivalent to M1.

Theorem 7. Let M1 be a minimal LFT in Ln1 with structural matrices A1, B1, C1, D1, and
structural parameters l,m, n1. Let M2 be the LFT described in Proposition 7. The number
of finite transducers M ∈ Ln2 which are equivalent to M2 is (qn2 − 1)(qn2 − q) · · · (qn2 −
qr−1)q(n2+l)(n2−r), where r = rank(∆̂M2).

Proof. The theorem follows from the next three facts, that we will prove in the remaining
of this section.
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1. For all matrices ∆1,∆2 ∈ {∆̂M |M ∈ Ln2 and M ∼M2}, the number of LFTs that are
equivalent to M2 and have ∆1 as augmented diagnostic matrix is equal to the number
of LFTs that are equivalent to M2 and have ∆2 as augmented diagnostic matrix.

2. The number of LFTs equivalent to M2 and have ∆̂M2 as augmented diagnostic matrix
is q(n2+l)(n2−r), with r = rank(∆̂M2).

3. The size of {∆̂M | M ∈ Ln2 and M ∼ M2} is (qn2 − 1)(qn2 − 2) · · · (qn2 − qr−1), with
r = rank(∆̂M2).

From Corollary 5, if two LFTs M and M ′ are equivalent, there is an invertible matrix
X such that ∆M ′ = ∆MX. The first of the above items is then an instance of the following
result.

Theorem 8. Let M ∈ Ln. Let S∆ = {M ′ ∈ Ln |M ′ ∼M and ∆̂M ′ = ∆}. Then, for every
X ∈ GLn(Fq), |S∆̂M

| = |S∆̂MX |.

Proof. Let f : S∆M
→ S∆MX such that f(M) = M ′, where M ′ is the transducer defined by

the matrices A′ = X−1AX, B′ = X−1B, C ′ = CX and D′ = D. It is straightforward to see
that ∆̂M ′ = ∆̂MX, and that the application f is bijective.

To prove item 2, let us count the number of transducers M ∈ Ln2 that are equivalent to
M2 and have ∆̂M2 as augmented diagnostic matrix. One has to count the possible choices
for the structural matrices A, B, C and D, of M , that satisfy the condition 2 of Theorem 4,
and ∆̂M2 = ∆̂M (which implies condition 1). The choice for D is obvious and unique from
condition 2, as well as the choice for C (from condition ∆̂M2 = ∆̂M ). How many choices does
one have for A such that the condition ∆̂M2 = ∆̂M is satisfied? And, how many choices for B
such that ∆̂M2 = ∆̂M and the second condition is satisfied, i.e., such that ∆̂MB2 = ∆̂MB?
The following result gives the number of possible choices for A, and the proof gives the form
of these matrices.

Theorem 9. Let M1 be a minimal LFT in Ln1 with structural matrices A1, B1, C1, D1,

and M2 the LFT described in Proposition 7. There are exactly qn2(n2−rank(∆M2
)) matrices

A ∈Mn2×n2(Fq) such that C2A
i
2 = C2A

i, for i = 0, 1, · · · , 2n2 − 1.

Proof. Let A ∈ Mn2×n2(Fq) be such that C2A
i
2 = C2A

i, for i = 0, 1, . . . , 2n2 − 1. Then,
C2A

i
2 = C2A

i−1
2 A, for i = 0, 1, . . . , 2n2 − 1.

Take A =

[
E1 E2

E3 E4

]
, with E1 ∈ Mn1×n1(Fq), E2 ∈ Mn1×n′(Fq), E3 ∈ Mn′×n1(Fq),

E4 ∈Mn′×n′(Fq), and n′ = n2 − n1. Then, from C2A
i
2 = C2A

i−1
2 A, for i ∈ {1, . . . , 2n2 − 1},

one gets that
[
C1A

i
1 0m×n′

]
=
[
C1A

i−1
1 E1 C1A

i−1
1 E2

]
, for i ∈ {1, . . . , 2n2 − 1}, i.e.,

C1A
i
1 = C1A

i−1
1 E1, and C1A

i−1
1 E2 = 0, for i ∈ {1, . . . , 2n2 − 1}. This is equivalent to

∆
(2n2−1)
M1

A1 = ∆
(2n2−1)
M1

E1, and ∆
(2n2−1)
M1

E1 = 0, or ∆
(2n2−1)
M1

(A1−E1) = 0 and ∆
(2n2−1)
M1

E1 =

0. Since M1 is minimal, by Lemma 4 and Corollary 3, rank(∆
(2n2−1)
M1

) = rank(∆M1) = n1 =

number of columns of ∆
(2n2−1)
M1

. Therefore, E1 = A1 and E2 = 0. Consequently, any matrix

A with the same first n1 rows as A2 satisfies C2A
i
2 = C2A

i, for i = 0, 1, . . . , 2n2−2, and those
matrices A are the only ones that satisfy condition 2. Because the last n2 − n1 rows of A
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can be arbitrarily chosen, and A has n2 columns, one gets that there are qn2(n2−n1) matrices
A that satisfy the required conditions. Since n1 = rank(∆M1) = rank(∆M2) (because M1 is
minimal, and M1 ∼M2), the result follows.

Now, for each matrix A such that ∆̂M2 = ∆̂M , i.e., C2A
i
2 = C2A

i , for i = 0, 1, . . . , 2n2−1,
one wants to count the number of matrices B that satisfy ∆̂MB2 = ∆̂MB, that is, satisfy
C2A

iB2 = C2A
iB , for i = 0, 1, . . . , 2n2 − 1.

Theorem 10. Let M1 be a minimal LFT with structural matrices A1, B1, C1, D1, and
structural parameters l,m, n1. Let M2 be the LFT described in Proposition 7. Given a

matrix A such that ∆̂M2 = ∆̂M , there are exactly ql(n2−rank(∆M2
)) matrices B ∈ Mn2×l(Fq)

such that C2A
iB2 = C2A

iB for i = 0, 1, · · · , 2n2 − 1.

Proof. Let A be a matrix such that ∆̂M2 = ∆̂M , and B such that ∆̂MB2 = ∆̂MB. Then,
∆̂M2B2 = ∆̂M2B. Consequently, ∆M2B2 = ∆M2B, which is equivalent to ∆M2(B2−B) = 0.
Since B has n2 rows, one concludes that there are exactly n2 − rank(∆M2) rows in B whose
entries can be arbitrarily chosen to have a solution of ∆M2(B2 − B) = 0. Therefore, and

since B has l columns, there are ql(n2−rank(∆M2
)) matrices B that satisfy condition 2 of

Theorem 4.

From this one concludes that the number of transducers in Ln2 that are equivalent to M2

and that have the same augmented diagnostic matrix is q(n2+l)(n2−r), where r = rank(∆̂M2),
which proves item 2. Item 3 is covered by the following two results together with Corollary 5.

Theorem 11. Let A ∈ Mm×n(Fq) such that rank(A) 6= n. Then, the number of matrices
X ∈ GLn(Fq) such that AX = A is (qn − qrank(A))(qn − qrank(A)+1) · · · (qn − qn−1). If
rank(A) = n, only the identity matrix satisfies this condition.

Proof. Let X ∈ GLn(Fq) be such that AX = A. Then, there are n − rank(A) rows in
X whose entries can be arbitrarily chosen to have a solution of AX = A. But, since
X has to be invertible, one has qn − qrank(A) possibilities for the “first” of those rows,
qn − qrank(A)+1 for the “second”, qn − qrank(A)+2 for the “third”, and so on. Therefore,
there are (qn− qrank(A))(qn− qrank(A)+1) · · · (qn− qn−1) matrices X that satisfy the required
condition.

The following result is a direct consequence of the previous Theorem and the size of
GLn(Fq).

Corollary 10. Let A ∈ Mm×n(Fq). Then, the number of matrices of the form AX, where
X ∈ GLn(Fq) is (qn − 1)(qn − q) · · · (qn − qrank(A)−1).

Since augmented diagnostic matrices of LFTs in the same equivalence class have the
same rank, Theorem 7 can be generalized to:

Corollary 11. Let M be a LFT with structural parameters l,m,n. Then

|[M ]∼n | = (qn − 1) (qn − q) · · ·
(
qn − qr−1

)
q(n+l)(n−r), where r = rank (∆M ) .

Given the structural matrices of a LFT, the last Corollary gives a formula to compute
the number of equivalent LFTs with the same size.
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6 A recurrence relation for the number of canonical LFTs

Let l,m, n ∈ N. The results on the previous section, together with Propositions 8, 9
presented below, allow us to count the number of canonical LFT with l,m, n as structural
parameters, by using a recurrence relation. The following result gives a formula to count the
number of canonical LFTs that have l,m, and n = 1 as structural parameters. The proof is
straightforward.

Proposition 8. Let l,m ∈ N \ {0}, and let n = 1. Then, the number of canonical LFTs
with structural parameters l,m, n is (qm − 1)ql(m+1)+1.

The next result is also quite obvious and gives a formula to count the number of trivial
LFTs.

Proposition 9. Let l,m, n ∈ N. The number of trivial LFTs with structural parameters
l,m, n is qn

2+l(m+n).

From the last section, one knows that any minimal LFT in Ln1 has exactly the same
number of equivalent LFTs in Ln2 . Let M be a minimal LFT with structural parameters
l,m, n1. We denote by NM(l, n1, n2) the number of non-minimal LFTs in Ln2 that are
equivalent to M . That is,

NM(l, n1, n2) = (qn2 − 1) (qn2 − q) · · ·
(
qn2 − qn1−1

)
q(n2+l)(n2−n1).

Consider also the following notation:

• CT(l,m, n): number of canonical LFTs which have l,m, n as structural parameters.

• TT(l,m, n): number of trivial LFTs which have l,m, n as structural parameters. By
Theorem 9, TT(l,m, n) = qn

2+l(m+n).

• LT(l,m, n): total number of LFTs which have l,m, n as structural parameters. That
is, LT(l,m, n) = qml+n(l+m+n).

• TNM(l,m, n): number of non-trivial LFTs which have l,m, n as structural parameters,
and are not minimal.

• EC(n): size of the equivalence class [M ]∼n , where M is a minimal transducer in Ln.
From Corollary 7 and the well known size of GLn(Fq), , EC(n) = (qn − 1)(qn −
q) · · · (qn − qn−1).

Then, given l,m, n ∈ N, the number of canonical LFTs with structural parameters l,m, n
satisfies the following recurrence relation:

{
CT(l,m, 1) = (qm − 1)ql(m+1)+1,
CT(l,m, n) = 1

EC(n) · (LT(l,m, n)− TT(l,m, n)− TNM(l,m, n)) ,

where TNM(l,m, n) =
∑n−1
i=1 CT(l,m, i) ·NM(l, i, n).
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7 Conclusion

We presented a way to compute the number of equivalent LFTs with the same size, by
introducing a canonial form for LFTs and an efficient method to test LFTs equivalence.
This is essencial to have a LFT uniform random generator, and to get an approximate value
for the number of non-equivalent injective LFTs, which is indispensable to evaluate the key
space of the FAPKC systems.

From some of the results obtained, we have deduced a recurrence relation that gives the
number of non-equivalent LFTs of a given size. This, together with the approximate value
for the number of non-equivalent injective LFTs, allow us to pursue this work and to verify
if random generation of LFTs is a feasible option to generate keys.
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