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Abstract

Kleene algebra with tests (KAT) is an equational system for program verification,
which is the combination of Boolean algebra (BA) and Kleene algebra (KA), the algebra
of regular expressions. In particular, KAT subsumes the propositional fragment of Hoare
logic (PHL) which is a formal system for the specification and verification of programs,
and that is currently the base of most tools for checking program correctness. Both the
equational theory of KAT and the encoding of PHL in KAT are known to be decidable.
In this paper we present a new decision procedure for the equivalence of two KAT
expressions based on the notion of partial derivatives. We also introduce the notion
of derivative modulo particular sets of equations. With this we extend the previous
procedure for deciding PHL. Some experimental results are also presented.

1 Introduction

Kleene algebra with tests (KAT) is an equational algebraic system for reasoning about
programs that combines Kleene algebra (KA) with Boolean algebra [18]. In particular, KAT
subsumes PHL [15], the propositional fragment of Hoare logic, which is a formal system
for the specification and verification of programs, and that is currently the base of most
tools for checking program correctness [11]. Testing if two KAT expressions are equivalent
is tantamount to prove that two programs are equivalent or that a Hoare triple is valid.
Deciding the equivalence of KAT expressions is as hard as deciding regular expressions (KA
expression) equivalence, i.e. PSPACE-complete [8]. In spite of KAT’s success in dealing with
several software verification tasks, there are very few software applications that implement
KAT’s equational theory and/or provide adequate decision procedures. Most of them are
within (interactive) theorem provers or part of model checking systems, see [1, 12, 6] for
some examples.

Based on a rewrite system of Antimirov and Mosses [5], Almeida et al. [3] developed an
algorithm that decides regular expression equivalence through an iterated process of testing
the equivalence of their derivatives, without resorting to the classic method of minimal
automaton comparison. Statistically significant experimental tests showed that this method

∗This work was partially funded by the ERDF - European Regional Development Fund through the
programme COMPETE (operational programme for competitiveness) and by National Funds through the
FCT – Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2011, CANTE-
PTDC/EIA-CCO/101904/2008, and FCOMP-01-0124-FEDER-020486
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is, on average and using an uniform distribution, more efficient than the classical methods
based on automata [2]. Another advantage of this method is that it is easily adapted to
other Kleene algebra, such as KAT. In this paper we present an extension of that decision
algorithm to test equivalence in KAT. The termination and correctness of the algorithm
follow the lines of [3], but are also close to the coalgebraic approach to KAT presented by
Kozen [17]. Deciding PHL can be reduced to testing KAT expressions equivalence [15]. Here
we present an alternative method by extending the notion of derivative modulo a set of
(atomic equational) assumptions. Once again the decision procedure has to be only slightly
adapted. The new method reduces the size of the KAT expressions to be compared with
the cost of a preprocessing phase. All the procedures were implemented in OCaml and some
experimental results are also presented.

2 Preliminaries

We briefly review some basic definitions about regular expressions, Kleene algebras, Kleene
algebras with tests (KAT), and KAT expressions. For more details, we refer the reader
to [13, 14, 18, 16, 8].

2.1 Kleene Algebra and Regular Expressions

Let Σ = {p1, . . . , pk}, with k ≥ 1, be an alphabet. A word w over Σ is any finite sequence of
letters. The empty word is denoted by 1. Let Σ∗ be the set of all words over Σ. A language
over Σ is a subset of Σ∗. The left quotient of a language L ⊆ Σ∗ by a word w ∈ Σ∗ is the
language w−1L = {x ∈ Σ∗ | wx ∈ L}. The set of regular expressions over Σ, RΣ, is defined
by:

r := 0 | 1 | p ∈ Σ | (r1 + r2) | (r1 · r2) | r
∗ (1)

where the operator · (concatenation) is often omitted. The language L(r) associated to r is
inductively defined as follows: L(0) = ∅, L(1) = {1}, L(p) = {p} for p ∈ Σ, L(r1 + r2) =
L(r1) ∪ L(r2), L(r1 · r2) = L(r1) · L(r2), and L(r∗) = L(r)∗. Two regular expressions r1
and r2 are equivalent if L(r1) = L(r2), and we write r1 = r2. With this interpretation, the
algebraic structure (RΣ,+, ·, 0, 1) constitutes an idempotent semiring, and with the unary
operator ∗, a Kleene algebra.

A Kleene algebra is an algebraic structure K = (K,+, ·, ∗, 0, 1), satisfying the axioms
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below.

r1 + (r2 + r3) = (r1 + r2) + r3 (2)

r1 + r2 = r2 + r1 (3)

r + 0 = r + r = r (4)

r1(r2r3) = (r1r2)r3 (5)

1r = r1 = r (6)

r1(r2 + r3) = r1r2 + r1r3 (7)

(r1 + r2)r3 = r1r3 + r2r3 (8)

0r = r0 = 0 (9)

1 + rr∗ ≤ r∗ (10)

1 + r∗r ≤ r∗ (11)

r1 + r2r3 ≤ r3 → r2
∗r1 ≤ r3 (12)

r1 + r2r3 ≤ r2 → r1r3
∗ ≤ r2 (13)

In the above, ≤ is defined by r1 ≤ r2 if and only if r1+ r2 = r2. The axioms say that the
structure is an idempotent semiring under +, ·, 0 and 1 and that ∗ behaves like the Kleene
star operator of formal language theory. This axiom set (with an usual first-order deduction
system) constitutes a complete proof system for equivalence between regular expressions [13].

2.2 Kleene Algebra with Tests and KAT Expressions

A Kleene algebra with tests (KAT) is a Kleene algebra with an embedded Boolean subalgebra
K = (K,B,+, ·, ∗, 0, 1,̄ ) where ¯ is an unary operator denoting negation and is defined only
on B, such that

• (K,+, ·, ∗, 0, 1) is a Kleene algebra;

• (B,+, ·,̄ , 0, 1) is a Boolean algebra;

• (B,+, ·, 0, 1) is a subalgebra of (K,+, ·, 0, 1).

Thus, a KAT is an algebraic structure that satisfies the KA axioms (2)–(13) and the axioms
for a Boolean algebra B.

Let Σ = {p1, . . . , pk} be a non-empty set of (primitive) action symbols and T = {t1, . . . , tl}
be a non-empty set of (primitive) test symbols. The set of boolean expressions over T is
denoted by Bexp and the set of KAT expressions by Exp, with elements b1, b2, . . . and e1,
e2, . . ., respectively. The abstract syntax of KAT expressions over an alphabet Σ ∪ T is
given by the following grammar,

b ∈ Bexp := 0 | 1 | t ∈ T | b | b1 + b2 | b1 · b2

e ∈ Exp := p ∈ Σ | b ∈ Bexp | e1 + e2 | e1 · e2 | e1
∗.

As usual, we often omit the operator · in concatenations and in conjunctions. The standard
language-theoretic models of KAT are regular sets of guarded strings over alphabets Σ and
T [16]. Let T = {t | t ∈ T} and let At be the set of atoms, i.e., of all truth assignments to T,

At = {b1 . . . bl | bi is either ti or ti for 1 ≤ i ≤ l and ti ∈ T}.
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Then the set of guarded strings over Σ and T is GS = (At ·Σ)∗ · At. Guarded strings will be
denoted by x, y, . . .. For x = α1p1α2p2 · · · pn−1αn ∈ GS, where n ≥ 1, αi ∈ At and pi ∈ Σ,
we define first(x) = α1 and last(x) = αn. If last(x) = first(y), then the fusion product xy is
defined by concatenating x and y, omitting the extra occurrence of the common atom. If
last(x) 6= first(y), then xy does not exist. For sets X,Y ⊆ GS of guarded strings, the set
X ⋄ Y defines the set of all xy such that x ∈ X and y ∈ Y . We have that X0 = At and
Xn+1 = X ⋄Xn, for n ≥ 0.

Every KAT expression e ∈ Exp denotes a set of guarded strings, GS(e) ⊆ GS. Given a
KAT expression e we define GS(e) inductively as follows,

GS(p) = {α1pα2 | α1, α2 ∈ At } p ∈ Σ
GS(b) = {α ∈ At | α ≤ b } b ∈ Bexp

GS(e1 + e2) = GS(e1) ∪ GS(e2)
GS(e1e2) = GS(e1) ⋄ GS(e2)
GS(e∗) = ∪n≥0GS(e)

n.

We say that two KAT expressions e1 and e2 are equivalent, and write e1 = e2, if and only
if GS(e1) = GS(e2). Kozen [18] showed that one has e1 = e2 modulo the KAT axioms, if
and only if, e1 = e2 is true in the free Kleene algebra with tests on generators Σ ∪ T . Two
sets of KAT expressions E,F ⊆ Exp are equivalent if and only if GS(E) = GS(F ), where
GS(E) = ∪e∈EGS(e).

3 Deciding Equivalence in KAT

In this section we present a decision algorithm to test equivalence in KAT. Kozen [17]
presented a coalgebraic theory for KAT extending Rutten’s coalgebraic approach for KA [20],
and improving the framework of Chen and Pucella [7]. Extending the notion of Brzozowski
derivatives to KAT, Kozen proved the existence of a coinductive equivalence procedure. Our
approach follows closely that work, but we explicitly define the notion of partial derivatives
for KAT, and we effectively provide a (inductive) decision procedure. This decision procedure
is an extension of the algorithm for deciding equivalence of regular expressions given in [3, 5],
that does not use the axiomatic system. Equivalence of expressions is decided through an
iterated process of testing the equivalence of their partial derivatives.

3.1 Derivatives

Given a set of guarded strings R, its derivative with respect to αp ∈ At · Σ, denoted by
Dαp(R), is defined as being the left quotient of R by αp. As such, one considers the following
derivative functions,

D : At · Σ → P(GS) → P(GS) E : At → P(GS) → {0, 1}

consisting of components,

Dαp : P(GS) → P(GS) Eα : P(GS) → {0, 1}

defined as follows. For α ∈ At, p ∈ Σ and R ⊆ GS,

Dαp(R) = { y ∈ GS | αpy ∈ R } and Eα(R) =

{

1 if α ∈ R
0 otherwise.
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3.2 Partial Derivatives

The notion of set of partial derivatives, cf. [4, 19], corresponds to a finite set representation
of the derivatives of an expression. Given α ∈ At, p ∈ Σ and e ∈ Exp, the set ∆αp(e) of
partial derivatives of e with respect to αp is inductively defined as follows,

∆ : At · Σ → Exp → P(Exp)

∆αp(p
′) =

{

{1} if p = p′

∅ otherwise

∆αp(b) = ∅

∆αp(e1 + e2) = ∆αp(e1) ∪ ∆αp(e2)

∆αp(e1e2) =

{

∆αp(e1) · e2 if Eα(e1) = 0
∆αp(e1) · e2 ∪ ∆αp(e2) if Eα(e1) = 1

∆αp(e
∗) = ∆αp(e) · e

∗,

where for Γ ⊆ Exp and e ∈ Exp, Γ · e = { e′e | e′ ∈ Γ } if e 6= 0 and e 6= 1, and Γ · 0 = ∅ and
Γ ·1 = Γ, otherwise. We note that ∆αp(e) corresponds to an equivalence class of Dαp(e) (the
syntactic Brzozowski derivative, defined in [17]) modulo axioms (2)–(4), (8), and (9). Kozen
calls such a structure a right presemiring.

The following syntactic definition of Eα : At → Exp → {0, 1} is from [17] and simply
evaluates an expression with respect to the truth assignment α.

Eα(p) = 0

Eα(b) =

{

1 if α ≤ b
0 otherwise

Eα(e1 + e2) = Eα(e1) + Eα(e2)
Eα(e1e2) = Eα(e1)Eα(e2)
Eα(e

∗) = 1.

One can show that,

Eα(e) =

{

1 if α ≤ e
0 if α 6≤ e

=

{

1 if α ∈ GS(e)
0 if α /∈ GS(e).

The next proposition shows that for all KAT expressions e the set of guarded strings
correspondent to the set of partial derivatives of e w.r.t. αp ∈ At · Σ is the derivative of
GS(e) by αp.

Proposition 1. For all KAT expressions e, all atoms α and all symbols p,

Dαp(GS(e)) = GS(∆αp(e)).

Proof. The proof is obtained by induction on the structure of e. We exemplify with the case
e = e1e2, where

Dαp(GS(e)) = Dαp(GS(e1) ⋄ GS(e2))

=

{

Dαp(GS(e1)) ⋄ GS(e2) if α /∈ GS(e1)
Dαp(GS(e1)) ⋄ GS(e2) ∪ Dαp(GS(e2)) if α ∈ GS(e1)

applying the induction hypothesis

=

{

(∪e′∈∆αp(e1)GS(e
′)) ⋄ GS(e2) if Eα(e1) = 0

(∪e′∈∆αp(e1)GS(e
′)) ⋄ GS(e2) ∪ GS(∆αp(e2)) if Eα(e1) = 1

=

{

∪e′∈∆αp(e1)GS(e
′e2) if Eα(e1) = 0

(∪e′∈∆αp(e1)GS(e
′e2)) ∪ GS(∆αp(e2)) if Eα(e1) = 1

=

{

GS(∆αp(e1) · e2) if Eα(e1) = 0
GS(∆αp(e1) · e2) ∪ GS(∆αp(e2)) if Eα(e1) = 1

= GS(∆αp(e1e2)) = GS(∆αp(e)).
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The notion of partial derivative of an expression w.r.t. αp ∈ At · Σ can be extended to
words x ∈ (At · Σ)∗, as follows,

∆̂ : (At · Σ)∗ → Exp → P(Exp)

∆̂1(e) = {e}

∆̂wαp(e) = ∆αp(∆̂w(e)).

Here, the notion of (partial) derivatives has been extended to sets of KAT expressions E ⊆
Exp, by defining, as expected, ∆αp(E) = ∪e∈E∆αp(e), for αp ∈ At · Σ. Analogously, we also
consider ∆̂x(E) and ∆̂R(E), for x ∈ (At · Σ)∗ and R ⊆ (At · Σ)∗.

The fact, that for any e ∈ Exp the set ∆̂(At·Σ)∗(e) is finite, ensures the termination of the
decision procedure presented in the next section.

3.3 A Decision Procedure for KAT Expressions Equivalence

In this section we describe an algorithm for testing the equivalence of a pair of KAT
expressions using partial derivatives. Following Antimirov [4], and for the sake of efficiency,
we define the function f that given an expression e computes the set of pairs (αp, e′), such
that for each αp ∈ At ·Σ, the corresponding e′ is a partial derivative of e with respect to αp.

f : Exp → P(At · Σ× Exp)

f(p) = { (αp, 1) | α ∈ At }

f(b) = ∅

f(e1 + e2) = f(e1) ∪ f(e2)

f(e1e2) = f(e1) · e2 ∪ { (αp, e) ∈ f(e2) | Eα(e1) = 1 }

f(e∗) = f(e) · e∗

where, as before, Γ · e = { (αp, e′e) | (αp, e′) ∈ Γ } if e 6= 0 and e 6= 1, and Γ · 0 = ∅ and
Γ · 1 = Γ, otherwise. Also, we denote by hd(f(e)) = {αp | (αp, e′) ∈ f(e)} the set of heads
(i.e. first components of each element) of f(e). The function derαp, defined in (14), collects
all the partial derivatives of an expression e w.r.t. αp, that were computed by function f.

derαp(e) = {e′ | (αp, e′) ∈ f(e)} (14)

The proof of the following Proposition is almost trivial and follows from the symmetry of
the definitions of derαp, f, and ∆αp.

Proposition 2. For all e, e′ ∈ Exp, α ∈ At and p ∈ Σ one has, derαp(e) = ∆αp(e).

To define the decision procedure we need to consider the above functions and the ones
defined in Section 3.2 applied to sets of KAT expressions. Then, we define the function
derivatives that given two sets of KAT expressions E1 and E2 computes all pairs of sets of
partial derivatives of E1 and E2 w.r.t. αp ∈ At · Σ, respectively.

derivatives : P(Exp)2 → P(P(Exp)2)

derivatives(E1, E2) = {(derαp(E1), derαp(E2)) | αp ∈ hd(E1 ∪ E2)}

8



Finally, we present the function equiv that tests if two (sets of) KAT expressions are
equivalent. For two sets of KAT expressions E1 and E2 the function returns True, if for
every atom α, Eα(E1) = Eα(E2) and if, for every αp, the partial derivative of E1 w.r.t. αp is
equivalent to the partial derivative of E2 w.r.t. αp.

equiv : P(P(Exp)2)× P(P(Exp)2) → {True,False}

equiv(∅, H) = True

equiv({(E1, E2)} ∪ S,H) =

{

False if ∃α ∈ At : Eα(E1) 6= Eα(E2)
equiv(S ∪ S′, H ′) otherwise,

where

S′ = {d | d ∈ derivatives(E1, E2) and d /∈ H ′} and H ′ = {(E1, E2)} ∪ H.

The function equiv accepts two sets S and H as arguments. At each step, S contains the
pairs of expressions that still need to be checked for equivalence, whereas H contains the
pairs of expressions that have already been tested. The use of the set H is important to
ensure that the derivatives of the same pair of expressions are not computed more than once,
and thus prevent a possible infinite loop.

To compare two expressions e1 and e2, the initial call must be equiv({({e1}, {e2})}, ∅). At
each step the function takes a pair (E1, E2) and verifies if there exists an atom α such that
Eα(E1) 6= Eα(E2). If such an atom exists, then E1 6= E2 and the function halts, returning
False. If no such atom exists, then the function adds (E1, E2) to H and then replaces in S
the pair (E1, E2) by the pairs of its corresponding derivatives provided that these are not in
H already. The return value of equiv will be the result of recursively calling equiv with the
new sets as arguments. If the function ever receives ∅ as S, then the initial call ensures that
e1 = e2, since all derivatives have been successfully tested, and the function returns True.

3.4 Termination and Correctness

First, we show that the function equiv terminates. For every KAT expression e, we define
the set PD(e) and show that, for every KAT expression e, the set of partial derivatives of
e is a subset of PD(e), which on the other hand is clearly finite. The set PD(e) coincides
with the closure of a KAT expression e, defined by Kozen, and is also similar to Mirkin’s
prebases [19].

PD(b) = {b}
PD(p) = {p, 1}

PD(e1 + e2) = {e1 + e2} ∪ PD(e1) ∪ PD(e2)
PD(e1e2) = {e1e2} ∪ PD(e1) · e2 ∪ PD(e2)
PD(e∗) = {e∗} ∪ PD(e) · e∗.

Lemma 1. Consider e, e′ ∈ Exp, α ∈ At and p ∈ Σ. If e′ ∈ PD(e), then ∆αp(e
′) ⊆ PD(e).

Proof. The proof is obtained by induction on the structure of e. We exemplify with the case
e = e1e2. Let e

′ ∈ PD(e1e2) = {e1e2} ∪ PD(e1) · e2 ∪ PD(e2).

• If e′ ∈ {e1e2}, then ∆αp(e
′) ⊆ ∆αp(e1)·e2∪∆αp(e2). But e1 ∈ PD(e1) and e2 ∈ PD(e2),

so applying the induction hypothesis twice, we obtain ∆αp(e
′) ⊆ PD(e1) ·e2 ∪PD(e2) ⊆

PD(e).

• If e′ ∈ PD(e1) · e2, then e′ = e′1e2 such that e′1 ∈ PD(e1). So ∆αp(e
′) ⊆ ∆αp(e

′
1) · e2 ∪

∆αp(e2) ⊆ PD(e1) · e2 ∪ PD(e2) ⊆ PD(e).
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• Finally, if e′ ∈ PD(e2), again by the induction hypothesis we have ∆αp(e
′) ⊆ PD(e2) ⊆

PD(e).

Proposition 3. For all x ∈ (At · Σ)∗, one has ∆̂x(e) ⊆ PD(e).

Proof. We prove this lemma by induction on the length of x. If |x| = 0, i.e. x = 1, then
∆̂1(e) = {e} ⊆ PD(e). If x = wαp, then ∆̂wαp = ∪

e′∈∆̂w(e)∆αp(e
′). By induction

hypothesis, we know that ∆̂w(e) ⊆ PD(e). By Lemma 1, if e′ ∈ PD(e), then ∆αp(e
′) ⊆ PD(e).

Consequently, ∪
e′∈∆̂w(e)∆αp(e

′) ⊆ PD(e).

Corollary 1. For all KAT expressions e, the set ∆̂(At·Σ)∗(e) is finite.

It is obvious that the previous results also apply to sets of KAT expressions.

Proposition 4. The function equiv is terminating.

Proof. When the set S is empty it follows directly from the definition of the function that it
terminates. We argue that when S is not empty the function also terminates based on these
two aspects:

• In order to ensure that the set of partial derivatives of a pair of (sets of) expressions are
not computed more than once, the set H is used to store the ones which have already
been calculated.

• Each function call removes one pair (E1, E2) from the set S and appends the set of
partial derivatives of (E1, E2), which have not been calculated yet, to S. By Corollary
1, the set of partial derivatives of an expression by any word is finite, and so eventually
S becomes ∅.

Thus, since at each call the function analyzes one pair from S, after a finite number of calls
the function terminates.

The next proposition states the correctness of our algorithm. Coalgebraically it states
that two KAT expressions are equivalent if and only if there exists a bisimulation between
them [17, Thm. 5.2].

Proposition 5. For all KAT expressions e1 and e2,

GS(e1) = GS(e2) ⇔

{

Eα(e1) = Eα(e2) and
GS(∆αp(e1)) = GS(∆αp(e2)), ∀α ∈ At.

Proof. Let us first prove the ⇐ implication. If GS(e1) 6= GS(e2), then there is x ∈ GS,
such that x ∈ GS(e1) and x /∈ GS(e2) (or vice-versa). If x = α, then we have Eα(e1) =
1 6= 0 = Eα(e2) and the test fails. If x = αpw, such that w ∈ (At · Σ)∗ · At, then since
αpw ∈ GS(e1) and αpw /∈ GS(e2), we have that w ∈ GS(∆αp(e1)) and w /∈ GS(∆αp(e2)).
Thus, GS(∆αp(e1)) 6= GS(∆αp(e2)).

Let us now prove the ⇒ implication. For α ∈ At, there is either α ∈ GS(e1) and α ∈
GS(e2), thus Eα(e1) = Eα(e2) = 1; or α 6∈ GS(e1) and α 6∈ GS(e2), thus Eα(e1) = Eα(e2) = 0.
For αp ∈ At · Σ, by Proposition 1, one has GS(∆αp(e1)) = GS(∆αp(e2)) if and only if
Dαp(GS(e1)) = Dαp(GS(e2)). This follows trivially from GS(e1) = GS(e2).
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4 Implementation

The algorithm presented in the previous section was implemented in OCaml [21]. Alterna-
tions, conjunctions, and disjunctions are represented by sets, and thus, commutativity and
idempotence properties are naturally enforced. Concatenations are represented by lists of
expressions. Primitive tests occurring in a KAT expression are represented by integers, and
atoms by lists of boolean values (where primitive tests correspond to indexes). For each KAT
expression e, we consider At as the set of atoms that correspond to the primitive tests that
occur in e. The implementation of the functions defined in Section 3.2 and Section 3.3, do not
differ much from their formal definitions. A common choice was the use of comprehension
lists to define the inclusion criteria of elements in a set. Because of our basic representation
of KAT expressions, we treat in a uniform way both expressions and sets of expressions.
The function Eα, used in equiv, is implemented using a function called eAll, that takes as
arguments two (sets of) expressions E1 and E2 and verifies if for every atom the truth
assignments for E1 and E2 coincide.

4.1 Experimental Results

In order to test the performance of our decision procedure we ran some experiments. We
used the FAdo system [9] to uniformly random generate samples of KAT expressions. Each
sample has 10000 KAT expressions of a given length |e| (number of symbols in the syntactic
tree of e ∈ Exp). The size of each sample is more than enough to ensure results statistically
significant with 95% confidence level within a 5% error margin. The tests were executed
in the same computer, an Intel R© Xeon R© 5140 at 2.33 GHz with 4 GB of RAM, running a
minimal 64 bit Linux system. For each sample we performed two experiments: (1) we tested
the equivalence of each KAT expression against itself; (2) we tested the equivalence of two
consecutive KAT expressions. For each pair of KAT expressions we measured: the size of
the set H produced by equiv (that measures the number of iterations) and the number of
primitive tests in each expression (|e|T ). Table 1 summarizes some of the results obtained.
Each row corresponds to a sample, where the three first columns characterize the sample,
respectively, the number of primitive actions (k), the number of primitive tests (l), and the
length of each KAT expression generated. Column four has the number of primitive tests in
each expression (|e|T ). Columns five and six give the average size of H in the experiment (1)
and (2), respectively. Column seven is the ratio of the equivalent pairs in experiment (2).
Finally, columns eight and nine contain the average times, in seconds, of each comparison in
the experiments (1) and (2). More than comparing with existent systems, which is difficult
by the reasons pointed out in the introduction, these experiments aimed to test the feasibility
of the procedure. As expected, the main bottleneck is the number of different primitive tests
in the KAT expressions.

1 2 3 4 5 6 7 8 9
k l |e| |e|T H(1) H(2) =(2) Time(1) Time(2)

5 5 50 9.98 7.35 0.53 0.42 0.0097 0.00087
5 5 100 19.71 15.74 0.76 0.48 0.0875 0.00223

10 10 50 11.12 8.30 0.50 0.07 0.5050 0.30963
10 10 100 21.93 16.78 0.67 0.18 20.45 1.31263

15 15 50 11.57 8.47 0.47 0.10 6.4578 55.22

Table 1: Experimental results for uniformly random generated KAT expressions.
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5 Hoare Logic and KAT

Hoare logic was first introduced in 1969, cf. [11], and is a formal system widely used for
the specification and verification of programs. Hoare logic uses partial correctness assertions
(PCA’s) to reason about program correctness. A PCA is a triple, {b}P{c} with P being
a program, and b and c logic formulas. We read such an assertion as if b holds before the
execution of P , then c will necessarily hold at the end of the execution, provided that P halts.
A deductive system of Hoare logic provides inference rules for deriving valid PCA’s, where
rules depend on the program constructs. We consider a simple while language, where a
program P can be defined, as usual, by an assignment x := v; a skip command; a sequence
P ;Q, conditional if b then P else Q, and a loop while b do P .

There are several variations of Hoare logic and here we choose an inference system,
considered in [10], that enjoys the sub-formula property, where the premises of a rule can be
obtained from the assertions that occur in the rule’s conclusion. With this property, given a
PCA {b}P{c}, where P has also some annotated assertions, it is possible to automatically
generate verification conditions that will ensure its validity. The inference rules for this
system are the following:

b → c
{b} skip {c}

b → c[x/e]

{b} x := e {c}

{b} P {c} {c} Q {d}

{b} P ; {c} Q {d}

{b ∧ c} P {d} {¬b ∧ c} Q {d}

{c} if b then P else Q {d}

{b ∧ i} P {i} c → i (i ∧ ¬b) → d

{c} while b do {i}P {d}

5.1 Encoding Propositional Hoare Logic in KAT

The propositional fragment of Hoare logic (PHL), i.e., the fragment without the rule for
assignment, can be encoded in KAT [15]. The encoding of an annotated while program
P and of our inference system follow the same lines. In PHL, all assignment instructions
are represented by primitive symbols p. The skip command is encoded by a distinguished
primitive symbol pskip. If e1, e2 are respectively the encodings of programs P1 and P2, then
the encoding of more complex constructs of an annotated while program involving P1 and
P2 is as follows.

P1 ; {c} P2 ⇒ e1ce2

if b then P1 else P2 ⇒ be1 + b̄e2

while b do {i} P1 ⇒ (bie1)
∗b̄

A PCA of the form {b}P{c} is encoded in KAT as an equational identity of the form

be = bec or equivalently by bec = 0,

where e is the encoding of the program P .

Now, suppose we want to prove the PCA {b}P{c}. Since the inference system for Hoare
logic, that we are considering in this paper, enjoys the sub-formula property, one can generate
mechanically in a backward fashion the verification conditions that ensure the PCA’s validity.

Since in the KAT encoding, bec = 0, we do not have the rule for assignment, besides
verification conditions (proof obligations) of the form b′ → c′ we will also have assumptions
of the form b′pc′ = 0.
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One can generate a set of assumptions, Γ = Gen(bec), backwards from bec = 0, where
Gen is inductively defined by:

Gen(b pskip c) = {b ≤ c}
Gen(b p c) = {b p c} pskip 6= p ∈ Σ

Gen(b e1 c e2 d) = Gen(b e1 c) ∪ Gen(c e2 d)

Gen(b (ce1 + c̄e2) d) = Gen(bc e1 d) ∪ Gen(bc e2 d)

Gen(b ((cie)∗c̄) d) = Gen(ic e i) ∪ {b ≤ i, ic ≤ d}

Note that Γ is necessarily of the form

Γ = {b1p1b′1 = 0, . . . , bmpmb′m = 0} ∪ {c1 ≤ c′1, . . . , cn ≤ c′n},

where p1, . . . , pm ∈ Σ and such that all b’s and c’s are Bexp expressions. In Section 6, we
show how one can prove the validity of beP c = 0 in the presence of such a set of assumptions
Γ, but first we illustrate the encoding and generation of the assumption set with an example.

5.2 A Small Example

Consider the program P in Table 2, that calculates the factorial of a non-negative integer.
We wish to prove that, at the end of the execution, the variable y contains the factorial of
x, i.e. to verify the assertion {True} P {y = x!}.

Program P Annotated Program P ′ Symbols used
in the encoding

y := 1; p1
{y = 0!} t1

y := 1; z := 0; p2
z := 0; {y = z!} t2
while ¬z = x do while ¬z = x do t3
{ {
z := z+1; {y=z!} t2
y := y×z; z := z+1; p3

} {y×z = z!} t4
y := y×z; p4

}

Table 2: A program for the factorial

In order to apply the inference rules we need to annotate program P , obtaining program
P ′. Applying the inference rules for deriving PCA’s in a backward fashion to {True} P′ {y =
x!}, one easily generates the corresponding set of assumptions provided by the annotated
version of the program. However, because we do not have the assignment rule in the KAT
encoding, here we simulate that by considering not only verification conditions but also
atomic PCA’s {b′}x := e{c′}. Thus the assumption set is

ΓP =







{True}y := 1{y = 0!}, {y = 0!}z := 0{y = z!},
{y = z! ∧ ¬z = x}z := z + 1{y × z = z!}, {y × z = z!}y := y × z{y = z!},
y = z! → y = z!, (y = z! ∧ ¬¬z = x) → y = x!







.

On the other hand, using the correspondence of KAT primitive symbols and atomic parts
of the annotated program P ′, as in Table 2, and additionally encoding True as t0 and y = x!
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as t5, respectively, the encoding of {True} P′ {y = x!} in KAT is

t0p1t1p2t2(t3t2p3t4p4)
∗t3t5 = 0. (15)

The corresponding set of assumptions Γ in KAT is

Γ = {t0p1t1 = 0, t1p2t2 = 0, t2t3p3t4 = 0, t4p4t2 = 0, t2 ≤ t2, t2t3 ≤ t5}. (16)

In the next section we will see how to prove in KAT an equation such as (15) in the presence
of a set of assumptions such as (16).

6 Deciding Hoare Logic

Rephrasing the observation in the end of last section, we are interested in proving in KAT
the validity of implications of the form

b1p1b′1 = 0 ∧ · · · ∧ bmpmb′m = 0 ∧ c1 ≤ c′1 ∧ · · · ∧ cn ≤ c′n → bpb′ = 0. (17)

This can be reduced to proving the equivalence of KAT expressions, since it has been
shown, cf. [15], that for all KAT expressions r1, . . . , rn, e1, e2 over Σ = {p1, . . . , pk} and
T = {t1, . . . , tl}, an implication of the form

r1 = 0 ∧ · · · ∧ rn = 0 → e1 = e2

is a theorem of KAT if and only if

e1 + uru = e2 + uru (18)

where u = (p1 + · · ·+ pk)
∗ and r = r1 + . . .+ rn. Testing this last equality can of course be

done by applying our algorithm to e1 + uru and e2 + uru. However, in the next subsection,
we present an alternative method of proving the validity of implications of the form 17. This
method has the advantage of prescinding from the expressions u and r, above.

6.1 Equivalence of KAT Expressions Modulo a Set of Assumptions

In the presence of a finite set of assumptions of the form

Γ = {b1p1b′1 = 0, . . . , bmpmb′m = 0} ∪ {c1 ≤ c′1, . . . , cn ≤ c′n} (19)

we have to restrict ourselves to atoms that satisfy the restrictions in Γ. Thus, let

AtΓ = { α ∈ At | α ≤ c → α ≤ c′, for all c ≤ c′ ∈ Γ }. (20)

Given a KAT expression e, the set of guarded strings modulo Γ, GSΓ(e), is inductively
defined as follows.

GSΓ(p) = {αpβ | α, β ∈ AtΓ ∧ ∀
bpb′=0 ∈ Γ (α ≤ b → β ≤ b′) }

GSΓ(b) = {α ∈ AtΓ | α ≤ b }
GSΓ(e1 + e2) = GSΓ(e1) ∪ GSΓ(e2)

GSΓ(e1e2) = GSΓ(e1) ⋄ GS
Γ(e2)

GSΓ(e∗) = ∪n≥0GS
Γ(e)n.

The following proposition characterizes the equivalence modulo a set of assumptions Γ,
and ensures the correctness of the new Hoare logic decision procedure.
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Proposition 6. Let e1 and e2 be KAT expressions and Γ a set of assumptions as in (19).
Then,

KAT,Γ ⊢ e1 = e2 iff GSΓ(e1) = GSΓ(e2).

Proof. By (18) one has KAT,Γ ⊢ e1 = e2 if and only if e1+uru = e2+uru is provable in KAT,
where u = (p1+· · ·+pk)

∗ and r = b1p1b′1+· · ·+bmpmb′m+c1c′1+· · ·+cnc′n. The second equality
is equivalent to GS(e1 + uru) = GS(e2 + uru), i.e. GS(e1) ∪ GS(uru) = GS(e2) ∪ GS(uru).
In order to show the equivalence of this last equality and GSΓ(e1) = GSΓ(e2), it is sufficient
to show that for every KAT expression e one has GSΓ(e) = GS(e) \ GS(uru) (note that
A ∪ C = B ∪ C ⇔ A \ C = B \ C).

First we analyze under which conditions a guarded string x is an element of GS(uru).
Given the values of u and r, it is easy to see that x ∈ GS(uru) if and only if in x occurs
an atom α such that α ≤ c and α 6≤ c′ for some c ≤ c′ ∈ Γ, or x has a substring αpβ, such
that α ≤ b and α 6≤ b′ for some bpb′ ∈ Γ. This means that x 6∈ GS(uru) if and only if every
atom in x is an element of AtΓ and every substring αpβ of x satisfies (α ≤ b → β ≤ b′),
for all bpb′ = 0 ∈ Γ. From this remark and by the definitions of AtΓ and GSΓ, we conclude
that GSΓ(e) ∩ GS(uru) = ∅. Note also that, since GSΓ(e) is a restriction of GS(e), one
has GSΓ(e) ⊆ GS(e). Now it suffices to show that for every x ∈ GS(e) \ GS(uru), one has
x ∈ GSΓ(e). This can be easily proved by induction on the structure of e.

We now define the set of partial derivatives of a KAT expression modulo a set of
assumptions Γ. Let e ∈ Exp. If α 6∈ AtΓ, then ∆Γ

αp(e) = ∅. For α ∈ AtΓ, let

∆Γ
αp(p

′) =

{

{Πb′ | bpb′ = 0 ∈ Γ ∧ α ≤ b } if p = p′

∅ if p 6= p′

∆Γ
αp(b) = ∅

∆Γ
αp(e1 + e2) = ∆Γ

αp(e1) ∪ ∆Γ
αp(e2)

∆Γ
αp(e1e2) =

{

∆Γ
αp(e1) · e2 if Eα(e1) = 0

∆Γ
αp(e1) · e2 ∪ ∆Γ

αp(e2) if Eα(e1) = 1

∆Γ
αp(e

∗) = ∆Γ
αp(e) · e

∗.

Note, that by definition, Π b′ = 1 if there is no bp = bpb′ ∈ Γ such that α ≤ b and α ∈ AtΓ.
The next proposition states the correctness of the definition of ∆Γ

αp.

Proposition 7. Let Γ be a set of assumptions as above, e ∈ Exp, α ∈ At, and p ∈ Σ. Then,

Dαp(GS
Γ(e)) = GSΓ(∆Γ

αp(e)).

Proof. The proof is obtained by induction on the structure of e. We only show the case
e = p, since the other cases are similar to those in the proof of Proposition 1. If α 6∈ AtΓ,
then GSΓ(p) = ∅ = Dαp(GS

Γ(p)). Also, ∆Γ
αp(p) = ∅ = GSΓ(∆Γ

αp(p)). Otherwise, if α ∈ AtΓ,

then GSΓ(p) = {αpβ | α, β ∈ AtΓ ∧ ∀
bpb′=0 ∈ Γ (α ≤ b → β ≤ b′)}, thus Dαp(GS

Γ(p)) = {β ∈

AtΓ | β ≤ b′ for all bpb′ = 0 ∈ Γ such that α ≤ b}. On the other hand, ∆Γ
αp(p) = {Πb′ |

bpb′ = 0 ∈ Γ ∧ α ≤ b}. Thus, GSΓ(∆Γ
αp(p)) = GSΓ(c), where c =

∏

bpb′=0 ∈ Γ,α≤b
b′. We

conclude that GSΓ(c) = {β ∈ AtΓ | β ≤ b′ for all bpb′ = 0 ∈ Γ such that α ≤ b}.
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6.2 Testing Equivalence Modulo a Set of Assumptions

The decision procedure for testing equivalence presented before can be easily adapted. Given
a set of assumptions Γ, the set AtΓ is obtained by filtering in At all atoms that satisfy c but
do not satisfy c′, for all c ≤ c′ ∈ Γ. The function f has to account for the new definition of
∆Γ

αp.

We compared this new algorithm, equivΓ, with equiv when deciding the PCA presented
in Subsection 5.2. First, we constructed expressions r and u from Γ, as described above and
proved the equivalence of expressions t0p1t1p2t2(t3t2p3t4p4)

∗t3t5 + uru and 0 + uru, with
function equiv. In this case |H| = 17. In other words, equiv needed to derive 17 pairs of
expressions in order to reach a conclusion about the correction of program P . Then, we
applied function equivΓ directly to the pair (t0p1t1p2t2(t3t2p3t4p4)

∗t3t5, 0) and Γ. In this
case, |H| = 5. Other tests, that we ran, produced similar results, but at this point we have
not carried out a study thorough enough to compare both methods.

7 Conclusion

Considering the algebraic properties of KAT expressions (or even KA expressions) it seems
possible to improve the decision procedure for equivalence. The procedure essentially com-
putes a bisimulation (or fails to do that if the expressions are inequivalent); thus it would
be interesting to know if, for instance the maximum bisimulation can be obtained. Having
a method that reduces the amount of used atoms, or alternatively to resort to an external
SAT solver, would also turn the use of KAT expressions in formal verification more feasi-
ble. Concerning Hoare logic, it would be interesting to treat the assignment rule within a
decidable first-order theory and to integrate the KAT decision procedure in an SMT solver.

References

[1] Kamal Aboul-Hosn & Dexter Kozen (2006): KAT-ML: An Interactive Theorem Prover
for Kleene Algebra with Tests. Journal of Applied Non-Classical Logics 16(1–2), pp.
9–33, doi:10.3166/jancl.16.9-33.

[2] Marco Almeida (2011): Equivalence of regular languages: an algorithmic approach and
complexity analysis. Ph.D. thesis, Faculdade de Ciências das Universidade do Porto.
http://www.dcc.fc.up.pt/~mfa/thesis.pdf.
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