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1.  Introduction
The problem of a ladder leaning on a wall has 
been discussed in numerous introductory phys-
ics textbooks and in journals [1–8]. These works 
haved focused on the static equilibrium condi-
tions of the ladder, considering friction against 
the wall and/or the floor. It has been shown that 
the reaction forces can be determined in quite a 
complex way, with the elastic properties of the 
ladder playing an important role. However, the 
dynamics of a sliding ladder has been studied 
less, and usually with the assumption that it is a 
rigid body that is not under friction conditions for 
both wall and floor surfaces simultaneously [7, 8].

Here we present a study, both experimental 
and theoretical, of the dynamics of the sliding 
ladder with friction at the end contacts with the 
wall and the floor. Video analysis of the ladder’s 
motion was performed with Tracker [9, 10], free-
ware software that includes the module Data Tool 

for video modelling. Experimental configuration 
of this motion indicated that the wall and ground 
have the same coefficient of friction and that the 
ladder is, initially, just on the verge of slipping 
downwards.

2.  Theory
The model we use relies on the assumption that 
the ladder is a homogeneous beam-shaped rigid 
body of length L and mass m. The coefficient 
of friction with the wall and the floor is μ. The 
angle of the ladder with the floor (θ) was chosen 
as the variable to describe the movement while 
the ladder is in contact with the wall (figure 1). 
The motion of the ladder is governed by the equa-
tions of mechanics for rigid body motion, namely:

⃗ ⃗=   ¨R m r� (1)

⃗θ
⎯→

=   ¨M I ,CM CM� (2)
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Abstract
This study is about the dynamics of a sliding ladder leaning against a vertical 
wall. The results are understood by considering the motion divided in two 
parts: (i) for ≤ ≤t t0 s with one degree of freedom, and (ii) for >t ts with two 
degrees of freedom, where the separation is determined by the instance t ,s  
when the ladder loses its contact with the wall. The observed experimental 
details are explained by appealing a simple model based on elementary 
notions of mechanics. We emphasize some features, such as a maximum of 
the x component of the velocity and of the acceleration of the centre of mass 
in the first part, and a minimum of the normal reaction force on the floor in 
the second.
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where ⃗ r̈  is the acceleration of the centre of mass 

(CM), CM = (x,y), 
⎯→
MCM is the resultant torque of 

the external forces about CM, ICM is the moment 
of inertia about CM assumed as  mL1/12 ,2  and θ̈ 
is the angular acceleration of the ladder during 
its intrinsic rotation. ⃗R  is the vector sum of the 
external forces ⃗ μ=  F N N( , ) ,A A A  ⃗ μ= −  F N N( , )B B B  
and weight ⃗mg , considering μ μ μ= = ,wall floor  
and therefore the normal reactions in A and B 
are respectively NA and N .B  The ladder is in equi-
librium for an angle larger than the critical angle 
θ μ μ= −−tan (1 )/2 .c

1 2

While there is contact with the vertical wall 
( θ˙ =     ˙y x ), equations (1) and (2) can be rewritten 
as:

μ¨ =   −  +  x
m

N N
1

( )B A� (3)

μ¨ =     +   −y
m

N N mg
1

( )A B� (4)

θ θ μ

θ μ

= +

+ −
mL

N N

N N

¨ 6
[sin (    )

cos (    ) ]

B A

A B

�

(5)

Thus, the following expressions of dynamics 
are obtained:

θ μ θ θ μ θ μ θ
μ

= − − + −
−L

g g g L¨ 3 2 sin cos cos ( ˙)

2

2 2

2

�

(6)

μ
θ θ μ θ θ

θ θ μ μ θ

= −
−

+

− − +

N
m

g L

L g g

2( 2)
[3 sin cos sin ( ˙)

2 cos ( ˙) 2 3 (cos ) ]

A 2
2

2 2

�

(7)
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g
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2

�

(8)

The ladder loses contact with the vertical 
wall at time t ,s  corresponding to NA = 0 at an angle 
θs given by

μ θ θ θ μ θ

θ θ μ

− ˙ +

+ =  

L

g
t[ sin 2 cos ] ( ( ) ) 3 (cos )

3 sin cos 2 .

s s s s

s s

2 2

�

(9)

It is easy to prove that if μ > 0 the ladder 
achieves the maximal speed of x component at 
the time tm, before losing contact with the wall 
(tm <  ts). In the case of no friction (μ = 0), that 
maximum value occurs exactly for tm = ts [3]  
(figure 2).

After losing contact with the vertical wall 
(t  >  ts), the beam’s motion has two degrees of 
freedom (θ and x). As a consequence, equa-
tions (1) and (2) result in the following:

θ

μ θ θ θ θ

μ θ θ θ
θ μ θ θ

¨ =

+ ˙

− ˙ −
+ −

g L

L g

L

3[2 sin sin cos ( )

(sin ) ( ) 2 cos ]

[1 3(cos ) 3 cos sin ]

2

2 2

2

�
(10)

μ θ θ
μ θ θ θ

¨ = −   ˙

− −
x

g L(2 sin )

2[3 cos sin 3(cos ) 1]2� (11)

=N 0A� (12)

θ θ
θ μ θ θ

= −
+ −

N
m g L1

2

(2 sin ( ˙) )

1 3(cos ) 3 cos sin
B

2

2� (13)

Figure 1.  The scheme of the ladder as a homogeneous 
beam-shaped rigid body. NA and NB are the normal 
reactions in A and B, respectively.

Figure 2.  The difference Δ = −t t ts m as a function of 
the coefficient of friction (computational results).



Dynamics of a sliding ladder leaning against a wall

331Physics  EducationMay 2015

These equations  allow us to recognize a 
discontinuity in ̇NA and ̇NB at t = ts. Therefore, 
there is also a discontinuity in the third deriva-
tives of the variables that describe the ladder’s 
motion, namely x, y and θ (i.e. in the derivatives 
of linear and angular acceleration). This result 
is represented in the computational curves of  
figures 6 and 7 and will be detailed in the follow-
ing sections.

3.  Experimental and computational 
results
An experiment was performed using a homo-
geneous rigid beam representation of a lad-
der, with a mass of 0.23572 kg and a length of 
1.005 m. We used a high-speed digital photog-
raphy acquisition camera (Panasonic FZ 100 
LUMIX, 220 frames s−1) to record the motion of 
the beam’s centre of gravity. The experimental 
setup is embedded in figure 3, which is a screen-
shot of Tracker’s main window. The coordinates 
of the CM during the beam’s motion (represented 
by red points) and x(t), y(t) and ẋ t( ) are depicted.

Initially, the beam was placed against the 
wall at an angle θ =  0.69 rad,o slightly lower than 
the experimental critical angle (the angle at which 
the beam starts to fall), and then left free to move.

Figure 4 shows the time variation of θ for 
both experimental and computational studies. 

Figure 3.  Experimental setup of a sliding ladder leaning against a wall (screenshot of Tracker’s main window). 
The coordinates of the CM during the motion are represented by red points. x(t), y(t) and ẋ t( ) are also represented.

Figure 4.  The angle θ of inclination of the ladder as 
a function of time. Representation of theoretical data 
(full red line) and experimental data (rhombus blue 
points). The vertical dot line marks the instant ts when 
the beam loses contact with the wall, while te is the 
instant of full stop of the ladder’s motion.
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The least-squares criterion was applied to adjust 
computational data to experimental and esti-
mate the coefficient of friction. It is evident 
from the plot that the agreement is fairly good, 
not only during the motion of the beam against 
the wall (t  <  ts, where ts = 0.592574 s is a 
numerical result and is identified in figure 4 by 
a vertical dot line), but also during the interval 
between losing contact and the full stop (at te = 
0.6791960 s, also obtained with computational 
analysis). The value obtained for μ from the 
curve fit was 0.43.

The evolution of coordinates x and y of the 
CM during the motion (figures 5(a) and (b)) also 
confirms the reasonable good performance of the 
model assumed.

The slight deviations observed from com-
parison of the experimental data and the compu-
tational data are possibly due to the assumption of 
an ideal beam for the ladder, a constant value for 
the coefficient of friction, and experimental errors 
on measuring the coordinates of CM.

As we suggested earlier, according to the 
model the x component of the speed should attain 
a maximum at tm, before the beam loses con-
tact with the wall. In this case, we have obtained 
tm = 0.551314 s from computational analysis. 
Experimental and computational data match within 
experimental uncertainty, as shown in figure 6.

We can also disclose a discontinuity in the 
derivative of the horizontal component of the 
acceleration at ts, the instant when the ladder loses 
contact with the wall. This is related to the discon-
tinuity in the derivative of the net force along the x 
direction, as supported by equations (12) and (13).

The existence of the maximum of ẋ before ts 
can be easily understood, since the normal forces 
NA and NB are not constant during the motion 
(figure 7), which is not always an obvious obser-
vation. From equation  (3), we conclude that the 
maximum occurs when μ =N N .B A

The plot of the acceleration along the x direc-
tion (figure 6) reveals additional features of the 
beam’s motion. Again, the existence of the maxi-
mum of ẍ before ts can be supported using math-
ematical analysis, looking for the solution of the 
equation μ  ̇ =   ̇N N .AB

We also note that ̇FB is discontinuous at ts 
and exhibits a minimal value within the interval 

 t t[ , ] .s e  This outcome anticipates a careful and 
more involved analysis of the dynamics of a lad-
der after losing contact with the wall, to be pub-
lished later.

Figure 5.  Theoretical and experimental results for the 
coordinates of CM as a function of time. The vertical 
dot line marks the instant ts when the beam loses 
contact with the wall, while te is the instant of full stop 
of the ladder’s motion.

Figure 6.  Representation of the evolution with time 
of the components of the velocity (experimental and 
theoretical) and acceleration of the CM along the x 
direction. Note that the left axis corresponds to speed, 
while the right axis corresponds to acceleration. 
The vertical dot line marks the instant tm where νx is 
maximal, while ts is the instant when the beam loses 
contact with the wall.
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The trajectory of the CM is represented 
in figure  8 both experimentally and theoreti-
cally. While there is no doubt about the geomet-
ric nature of this Cartesian line for <t ts (circle 
line), no easy conclusion can be reached for >t t ,s  
which reinforces the need for further study of the 
dynamics of the last part of the movement.

4.  Conclusion
This work addresses the dynamics of a sliding lad-
der in a context that, as far as we know, has never 

been studied previously. We restrict our study to 
the case where coefficients of friction along the 
two surfaces are equal, although no significant 
modifications should result if the coefficients are 
different or tend to zero.

The fact that the ladder leaves the wall at a 
specific instant ts when the normal reaction force 
on the wall NA vanishes, before reaching the end of 
the motion, indicates the importance of consider-
ing the falling motion in two parts:   ≤ ≤t tfor 0 s 
with one degree of freedom and   >t tfor s with two 
degrees of freedom. This second part of the motion 
has been ignored so far in the literature [2, 7, 11].

The physical interpretation of the dynam-
ics of the ladder is more complex than is usually 
admitted in the literature [12]. In particular, the 
normal reaction forces change along the motion, 
resulting in surprising observations such as, for 
example, the maximum for the speed (supported 
by experimental data) along the x direction, and 
the discontinuity of the time derivatives ̇NA and 

̇  NB  at the instant when the ladder loses contact 
with the wall. A more general discussion of the 
problem is in progress and will be published later.

Finally, we stress that this problem provides 
an excellent introduction to the modelling process 
for college students and physics and mathematics 
teachers. Students have the opportunity to practise 
experimental techniques, theoretical modelling and 
video data acquisition and analysis. Additionally, 
the problem is a challenge where students can dis-
cuss their ideas with their fellow students and their 
teachers, creating a rich environment for a better 
understanding of physical science.
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