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Abstract
A recent reform in the Portuguese secondary school curriculum reintroduced
the study of capacitors. Thus we decided to implement some experimental
activities on this subject with our undergraduate students in physics
education courses. A recent announcement of a new kind of capacitor being
developed by a team of scientists at Massachusetts Institute of Technology
(MIT), which makes use of nanotechnologies, was a great motivation for the
study of a topic that could easily be considered ‘out of time’. Since this new
kind of capacitor is being seen as the battery of the future, our focus was
essentially on efficiency measurements, motivating students to obtain,
respectively, the time constant and the energies stored and supplied during
the charge and discharge processes, from experimental graphics representing
the power as a function of time in real capacitors.

History
The Leiden jar (figure 1) was probably the
first capacitor, invented in 1745, in the Nether-
lands (Greenslade 1994). There are, of course,
speculations about its use in ancient times. The
Ark of the Covenant, for example, has been de-
scribed from Exodus to Indiana Jones as having
incredibly destructive powers. The meticulous de-
scription of its construction that we can read in
the Old Testament leads most people to believe
that it could have been a giant capacitor. Anyway,
the legends underlying the history of the capacitor
may be used by teachers as a strong motivation for
secondary school pupils.

The recent history of the capacitor has, until
now, been less interesting. Its technological
applications are well established and known.
However, a team of scientists at Massachusetts
Institute of Technology, lead by Joel Schindall,
has recently announced on Schindall’s website4

something that could really be the battery of the
future. It is actually a capacitor whose electrodes
are covered with millions of tiny filaments called
nanotubes, increasing dramatically its effective
area and allowing it to store much more energy.
The advantages of this new kind of device are

4 http://lees-web.mit.edu/lees/schindall j.htm
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Figure 1. The Leiden jar (courtesy of the Science
Museum at the Faculty of Science, University of Porto).

many: it has virtually an infinite lifetime, with
evident ecological benefits, and can be charged in
seconds.

When we read this announcement we felt
a mixture of enthusiasm and curiosity. Two
questions immediately came to our minds.

(1) The time constant of the capacitive circuit
determines the times of both its charge and
discharge. How do these scientists manage to
keep such a short time of charge and
simultaneously provide a very long time of
discharge, so that the capacitor can be used as
a battery?

(2) A capacitor accumulates energy as an electric
field. Will this process be efficient? How can
we measure it experimentally?

The first question is hard to answer. The
use of ordinary batteries does not depend on the
resistance of the external circuit to which they will
be connected. If this new device is intended to
work in the same way, there will be, of course,
some technical issues to be solved that surpass the
aim of this work.

The second question can be easily inves-
tigated with students, and is discussed in the
following.

Theory
When a battery (emf ε and negligible internal
resistance) is connected to a series circuit
with a resistor (resistance R) and a capacitor

Figure 2. An RC circuit for an ideal capacitor.
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(capacitance C) it will act as a source of energy to
the capacitor, charging it until the voltage across
the capacitor equals the battery emf (figure 2).

For an ideal capacitor (no internal resistance),
when the process of charging takes place,
the current value decreases and asymptotically
approaches zero, as the capacitor becomes
charged; meanwhile the voltage increases. This
can be described mathematically, making use of
Kirchoff’s laws for electric circuits, resulting in
equations (1) and (2) for the electric current and
voltage, respectively:

Ic(t) = ε

R
e− t

RC (1)

Vc(t) = ε(1 − e− t
RC ). (2)

The product RC is known as the time constant
of the circuit (τ ).

If we remove the battery from the circuit
and connect the charged capacitor directly to
the same resistor R, the voltage and the current
follow the same kind of decay curve, as shown
by equations (3), and (4), also valid for an ideal
capacitor:

Id(t) = − ε

R
e− t

RC . (3)

(The negative sign means that the current Id is
flowing in the opposite direction with respect to
the charging process.)

Vd(t) = εe− t
RC . (4)

We can easily compute the power received
by the capacitor during charge by multiplying
equations (1), and (2):

Pc(t) = Vc Ic = ε2

R
(e−t/τ − e−2t/τ ); (5)
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and the power supplied by the capacitor during
discharge by multiplying equations (3), and (4):

Pd(t) = Vd Id = −ε2

R
e−2t/τ , (6)

where the negative sign results from the current
direction. Integration of the resultant equations
over time yields the corresponding values of
electric energy.

Since the voltage V is energy per unit of
charge Q, students usually conclude that most
probably the energy stored by an ideal capacitor
is given by QV. However, it can be shown (Young
and Freedman 1996) that half of this value is
dissipated in the external resistor regardless of
its resistance R, and the other half is stored by
the capacitor (Mita and Boufaida 1999, Newburgh
2005). So, students often get surprised that, for an
ideal capacitor, the efficiency is just 50%!

In a real capacitor, things may change
significantly: the dielectric material between the
plates of a real capacitor has a finite resistivity
(as compared to infinite resistivity in the case
of an ideal capacitor). Therefore, in a real
capacitor, a leakage resistance must be included in
the capacitor model (Bisquert et al 2000). This
implies that part of the energy received during
charge will not be recovered in discharge: the
efficiency will be even lower.

Experimental procedure
In our experiments we studied a 10 F Goldcap
electrolytic capacitor (breakdown voltage =
2.3 V) available from Fischer Technik, in a series
circuit with a small resistance (<10 �) and a
variable DC power supply. To acquire data we
used current and voltage sensors, connected to a
Vernier LabPro interface and LoggerPro software.
The data collection rate has an obvious influence
on the accuracy of the measurements, so we kept
it as high as that supported by the equipment (50
samples per second).

The software was intuitively mastered by the
students. They could choose to visualize one
or both V = f (t) and I = f (t) plots concerning
charge (figure 3(a)) and discharge (figure 3(b)).
Then they defined a new variable P as the product
of V and I and displayed the P = f (t) plots.
Figures 4(a) and (b) show the charge and discharge
graphs obtained, respectively.

Figure 3.  Voltage and current versus time plots 
concerning: (a) charge; and (b) discharge.
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Results and discussion
The power curve in figure 4(a), concerning charge,
reveals a relative maximum at instant tM. If we
look at equation (5), Pc(t) has indeed a predictable
maximum, occurring at tM = τ ln 2. Therefore,
if the data collection rate is high enough, students
can get the time constant of the circuit with fair
accuracy by reading time tM in the power graph
and making a simple calculation:

τ = tM
ln 2

. (7)

The power graph for discharge (figure 4(b))
does not exhibit any maximum, and the corre-
sponding function is given by equation (6).

The software also allowed students to
determine the values of the underlying areas of
these plots, which correspond to the desired values
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Figure 4.  Power versus time plots concerning: (a) 
charge; and (b) discharge.
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of the energies received (figure 4(a)) and supplied
(figure 4(b)) by the capacitor: 14.606 J and
12.679 J, respectively. Contrary to what the
students expected, the energy received by the
capacitor during charge is always higher than the
energy yielded on discharge! Where does the
energy go, then?

To answer this question, we must recall that
we are dealing with a real capacitor and there is
going to be a small amount of current flowing
between the capacitor plates. We can model a
real capacitor by introducing a leakage resistance
r , represented by a resistor, connected in parallel
with the ideal capacitor, as shown in figure 5.

To determine the power received and supplied
by the capacitor, we have to use Kirchoff’s laws to
find the expressions for I (t), I1(t), I2(t) and the
voltage V at the capacitor terminals.

Figure 5. An RC circuit for a real capacitor.

I

C

R

ε r

I2 I1

For the process of charge, these expressions
are

I1c(t) = q2

rC
= Req

r R
ε(1 − e−t/τeq ) (8)

I2c(t) = ∂q2

∂ t
= ε

R
e−t/τeq (9)

Ic(t) = I1c(t) + I2c(t)

= ε

R

[
Req

r
(1 − e−t/τeq ) + e−t/τeq

]
(10)

Vc(t) = q2

C
= Req

R
ε(1 − e−t/τeq ) (11)

where Req = ( 1
r + 1

R )−1, τeq = ReqC , and q2 is
the electric charge in the capacitor branch.

The power effectively received by the
capacitor during charge is given by the product
Vc I2c. However, what we can experimentally
determine is Vc Ic:

Pc(t) = Vc(t)Ic(t) = ε2

R2
Req

[
Req

r
(1 − e−t/τeq )2

+ e−t/τeq (1 − e−t/τeq )

]
. (12)

Pc has a relative maximum at tM = τeq ln 2
α

(see
appendix A), where α = 1 − R

r . In most cases
we will have R

r � 1, so α ≈ 1 and therefore the
time constant of the circuit is τeq ≈ tM

ln 2 , which
is the same result we had for an ideal capacitor
(equation (7)).

The energy Ec received by the capacitor can
be computed as follows (see appendix B):

Ec =
∫ tc

0
Pc(t) dt ≈

(
Req

R

)2 Cε2

2
(1 + 2A)

(13)
with tc � τeq, where tc is the instant at which the

charge process ends, and A = 1
rC

∫ tc
0 dt − 3

2
Req

r
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corresponds to the fraction of energy dissipated
at the leakage resistance r of the real capacitor.
It should be emphasized that this term is small
but increases with time, because current will still
flow through the circuit after the capacitor is
fully charged; the energy effectively stored by the
capacitor during charge is

Estored =
(

Req

R

)2 Cε2

2
. (14)

For the process of discharge, the analogous
expressions to (8), (9), (10), and (11) are

I1d(t) = q2

rC
= Req

r R
εe−t/τeq (15)

I2d(t) = ∂q2

∂ t
= − ε

R
e−t/τeq . (16)

(The negative sign means that the current I2 in
figure 5 is now flowing in the opposite direction.)

Id(t) = I1d(t) + I2d(t) = ε

R
e−t/τeq

[
Req

r
− 1

]

(17)

Vd(t) = q2

C
= Req

R
εe−t/τeq . (18)

Once again, the power supplied by the capacitor
is Vd I2d, but what we experimentally determine is
Vd Id:

Pd(t) = Vd(t)Id(t) = ε2

R2
Reqe−2t/τeq

[
Req

r
− 1

]
.

(19)
This equation shows that the value of Pd decreases
with time. The corresponding energy supplied by
the capacitor to the resistance R is

Ed =
∫ td

0
Pd(t) dt ≈ −

(
Req

R

)2 Cε2

2
(1 − B)

(20)
with td � τeq, where td is the instant at which the

discharge process ends, and B = Req

r corresponds
to the fraction of energy dissipated at the leakage
resistance r of the capacitor. Once again, the
negative sign for Ed comes from the current I2d.

Comparing equations (13) and (20), we
conclude that

|Ec| − |Ed| =
(

Req

R

)2 Cε2

2
{|1 + 2A|

− |1 − B|} =
(

Req

R

)2

Cε2

(
1

rC

∫ tc

0
dt− Req

r

)

|Ec| − |Ed| = 1(
1 + R

r

)2

Cε2

r

×
(∫ tc

0 dt

C
− R

1 + R
r

)
> 0. (21)

Considering that in most cases we have R
r �

1, then equation (20) can be simplified into

|Ec| − |Ed| ≈ ε2

r

(∫ tc

0
dt − RC

)
. (22)

Thus the energy measured when charging the
capacitor must effectively be higher than the one
measured when discharging it, as experimentally
determined (figures 4(a) and (b)); the difference is
only due to the energy dissipated at the leakage
resistance of the capacitor.

An interesting observation, however, is that
the longer the time we take to charge and discharge
the capacitor, the higher will be the difference
in the measured energies, i.e., the higher will
be the difference between the energy supplied to
the capacitor and the energy the capacitor really
supplies to the discharging circuit!

In this experiment, this difference calculated
from figures 4(a) and (b) is |Ec| − |Ed| = 1.927 J;
also, ε ≈ 1.6 V; C = 10 F; R ≈ 3 � and
the time for charging and discharging was about
180 s. Therefore we are able to compute the
effective leakage resistance of the capacitor, by
transforming equation (22) into

r ≈
ε2

(∫ 180
0 dt − RC

)
|Ec| − |Ed| ,

obtaining, as a result, r ≈ 199 �. Note that,
according to this result, τeq ≈ 29.6 s, which is in
good agreement with the assumptions made during
the theoretical approach, i.e., tc, td � τeq and
R
r � 1.

The results show that the leakage resistance of
the real capacitor is not as high as we could expect,
but half an hour after its charge it still may have a
significant part of its energy stored. That is why we
must wait some hours before opening high voltage
electronic circuits like TVs or computer monitors,
because of the risk of electric shock!

Conclusions
Classical physics topics are generally considered
‘old fashioned’ for classroom discussion. In this
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work with our students we took advantage of an
interesting context and focused unexplored details,
in order to motivate them for laboratory work in
the shape of a genuine investigation.

The results obtained allowed them to under-
stand the difference between an ideal capacitor and
a real one. They used voltage and current sensors
to study the charge and discharge of a capacitor,
plotted V = f (t), I = f (t) and P = f (t) graphs,
and computed the energies received and supplied
by the capacitor. These energies were 14.606 J and
12.679 J, respectively; the difference is due to the
real behaviour of the capacitor dielectric. These
values are, of course, obtained from the measure-
ment of current in the external circuit and do not
reflect the exact values of the energies stored in
the capacitor. Therefore, students could conclude
that only 86.8% of the energy received by the ca-
pacitor was returned to the circuit and not 100% as
they could expect for an ideal capacitor.

It should be additionally emphasized that the
energy received by the capacitor is already just half
of the total energy yielded by the power supply.
So, the final efficiency of the capacitor is always
less than 50%!

Appendix A
The time at which the maximum of Pc occurs
can be obtained from the time derivative of
equation (12):

Pc(t) = Vc(t)Ic(t) = ε2

R2
Req

×
[

Req

r
(1 − e−t/τeq )2 + e−t/τeq (1 − e−t/τeq )

]

by imposing that ∂ Pc
∂ t = 0. From this derivative,

we obtain the following equations:

e−t/τeq

τeq

{
2

Req

r
(1 − e−t/τeq ) − 1 + 2e−t/τeq

}
= 0

2
Req

r
− 1 − 2e−t/τeq

(
Req

r
− 1

)
= 0.

From this, we take

e−t/τeq = 2 Req

r − 1
Req

r − 1

1

2
=

(
1 − Req

r

)
1

2

and therefore, −t
τeq

= ln α
2 , where α = (1 − Req

r ),
which finally leads to the expression of the relative
maximum of Pc at tM: tM = τeq ln 2

α
.

Appendix B
The energy Ec received by the capacitor can be
computed as Ec = ∫ t

0 Pc(t) dt , where tc is the
instant at which the charge process ends. The
rigorous calculus of this integral is

Ec =
∫ tc

0
Pc(t) dt

= ε2

R2
Req

∫ tc

0

{
Req

r
(1 − e−t/τeq )2

+ e−t/τeq (1 − e−t/τeq )

}
dt

Ec =
∫ tc

0
Pc(t) dt

= ε2

R2
Req

{
Req

r

∫ tc

0
(1 − e−t/τeq )2 dt

+
∫ tc

0
e−t/τeq (1 − e−t/τeq ) dt

}
.

We can easily solve these integrals in the following
way:∫ tc

0
(1 − e−t/τeq )2 dt

=
∫ tc

0
(1 − 2e−t/τeq + e−2t/τeq ) dt

=
∫ tc

0
dt + 2τeq

[
e−tc/τeq − 1

]

− τeq

2

[
e−2tc/τeq − 1

]
.

Considering that, experimentally, tc � τeq,
then e−tc/τeq ≈ 0, and the previous integral
becomes∫ tc

0
(1 − e−t/τeq )2 dt ≈

∫ tc

0
dt − 3

2τeq.

In the same way,∫ tc

0
e−t/τeq (1 − e−t/τeq ) dt

=
∫ tc

0
e−t/τeq dt −

∫ tc

0
e−2t/τeq dt

= −τeq
[
e−tc/τeq − 1

] + τeq

2

[
e−2tc/τeq − 1

]
.

Once again, considering that, experimentally, tc �
τeq, then e−tc/τeq ≈ 0, and we obtain

∫ tc

0
e−t/τeq (1 − e−t/τeq ) dt ≈ τeq

2
.

Replacing the integrals in equation (13), we
finally compute the energy received by the
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capacitor during the charge process:

Ec =
∫ tc

0
Pc(t) dt ≈ ε2

R2
Req

×
{

Req

r

[∫ tc

0
dt − 3

2
τeq

]
+ τeq

2

}
.

Remembering that τeq = ReqC , and replacing it in
the previous equation,

Ec =
∫ tc

0
Pc(t) dt ≈ ε2

R2
Req

×
{

ReqC

rC

∫ tc

0
dt − 3

2

R2
eqC

r
+ ReqC

2

}

Ec =
∫ tc

0
Pc(t) dt ≈

(
Req

R

)2 Cε2

2
(1 + 2A)

where A = 1
rC

∫ tc
0 dt − 3

2
Req

r .

Received 30 November 2007, in final form 26 March 2008
doi:10.1088/0031-9120/43/4/008

References
Bisquert J, Garcia-Belmonte G and

Fabregat-Santiago F 2000 The role of

instrumentation in the process of modeling real
capacitors IEEE Trans. Educ. 43 439–42

Greenslade T B Jr 1994 Discovery of the Leiden jar
Phys. Teach. 32 536–7

Mita K and Boufaida M 1999 Ideal capacitor circuits
and energy conservation Am. J. Phys. 67 737–9

Newburgh R 2005 Two theorems on dissipative
energy losses in capacitor systems Phys. Educ.
40 370–2

Young H D and Freedman R A 1996 University Physics
9th edn (New York: Addison-Wesley) p 780

Paulo Simeão Carvalho is an assistant
professor at the Porto University Physics
Department. His research interests are
highly polar liquid crystals, liquid
crystal–polymer composites and physics
education.

Adriano Sampaio e Sousa is a teaching
assistant at the Porto University Physics
Department. His research interests are
mainly in teaching strategies and
conceptual learning. He has worked in
teacher training (initial and continuous)
for the last 25 years.

406 P H Y S I C S E D U C A T I O N July 2008

http://dx.doi.org/10.1088/0031-9120/43/4/008
http://dx.doi.org/10.1109/13.883355
http://dx.doi.org/10.1119/1.2344104
http://dx.doi.org/10.1119/1.19363
http://dx.doi.org/10.1088/0031-9120/40/4/008

	References

